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Executive Summary 
Over the past decades, transportation agencies have used predictive planning with a 
predetermined plan within a specific timeframe. Travel models are designed to provide point-
estimate forecasts. This means that the model inputs and other assumption used for developing 
the forecasts are assumed to be deterministic and unvarying (i.e., no uncertainty exists in the 
assumptions). However, by its very nature, long range transportation planning is uncertain. In a 
more general way, the planning community faces problems that involve uncertainty about the 
future all the time. This uncertainty comes from uncertainty in how systems work, uncertainty in 
how inputs to a system will change in the future, uncertainty about what are the important 
features of a system on which to focus, and a number of other uncertainties. It is imperative for 
planners to recognize this uncertainty and utilize different approaches and tools to support 
examining and planning for systems with uncertainty. 

A new approach, exploratory modeling and analysis (EMA), embraces the examination of 
uncertainty by explicitly treating computational experiments (i.e., models) as a set of 
assumptions and hypotheses and aims to explore the impacts of the assumptions on the 
analysis of interest. Exploratory modeling approaches are preferred when critical information is 
unavailable. EMA has been used to better understand systems with deep uncertainty by 
calibrating models that explain the system where some inputs to the system have deep 
uncertainty associated with them, there are various policies or levers available to a 
decisionmaker to affect the system, and there are various outputs of the system which are of 
interest. 

The FHWA Exploratory Modeling and Simulation Study focused on exploratory, rather than 
predictive, modeling of future transportation systems, with particular attention to the impacts of 
new technology. One outcome of this project was the development of the Travel Model 
Improvement Program Exploratory Modeling and Analysis Tool (TMIP-EMAT). TMIP-EMAT was 
developed to help agencies manage uncertainties by illuminating interactions between 
transportation supply and demand on the urban surface transportation system through 
exploratory modeling and simulation, provide insights of potential, possible, plausible, probable, 
or preferred futures, and support robust regional transportation planning decisionmaking 
incorporating principles of risk management. 

TMIP-EMAT can be integrated with existing travel modeling tools to facilitate the application of 
those models in an exploratory, rather than predictive, manner. It builds upon evolving 
sensitivity and risk analysis approaches using travel models to forecast uncertainty; it can be 
used to understand the effects of future mobility impacts on travel patterns, and it incorporates 
exploratory-type visualizers and optimization search tools to present and analyze the results. 

TMIP-EMAT can produce results for performing risk analysis and exploratory analysis. 
TMIP-EMAT is not a transportation model in and of itself; it is a utility tool that enables an 
analyst to use the region’s transportation model for exploratory analyses. 

TMIP-EMAT has been successfully deployed by planning agencies in the U.S. The Oregon 
Department of Transportation used TMIP-EMAT to support analysis of future technologies 
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where little or no observed data exist to estimate and validate models, using the Southern 
Oregon Activity-Based Model. The Greater Buffalo Niagara Regional Transportation Council 
used TMIP-EMAT to evaluate infrastructure investments along a specific corridor in the region, 
using their four-step travel model. 
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Section I 

Introduction 
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1.0 Introduction 
Over the past decades, transportation agencies have used predictive planning with a 
predetermined plan within a specific timeframe. Travel models are designed to provide point-
estimate forecasts (Transportation Research Board, 2007). This means that the model inputs 
and other assumption used for developing the forecasts are assumed to be deterministic and 
unvarying (i.e., no uncertainty exists in the assumptions). However, by its very nature, long 
range transportation planning is uncertain. In a more general way, the planning community 
faces problems that involve uncertainty about the future all the time. This uncertainty comes 
from uncertainty in how systems work, uncertainty in how inputs to a system will change in the 
future, uncertainty about what are the important features of a system on which to focus, and a 
number of other uncertainties. It is imperative for planners to recognize this uncertainty and 
utilize different approaches and tools to support examining and planning for systems with 
uncertainty. 

Emerging connected and autonomous vehicle (CAV) technology, new mobility services, and 
changing travel patterns will potentially have significant unpredictable impacts on future surface 
transportation operations and travel demand. Current practice is to build theoretical extensions 
of existing models based on stated-preference surveys, technological trends, and expert opinion 
(Childress et al., 2015; Gucwa, 2014; Vovsha, 2017; Cambridge Systematics, Inc., 2016). 
However, it is extremely challenging to use travel models to predict what effects these disruptive 
technologies will have on travel behavior and, in turn, on the surface transportation system, 
given the lack of substantive data at the age of rapid technological innovations as we are now. 
Uncertainty associated with significant 
unpredictable impacts has been termed 
deep uncertainty (Lempert et al., 2003). 
Under the condition of deep uncertainty, 
one of the primary challenge for 
transportation agencies is to understand the 
scope of impacts and interactions and the 
implications on traditional planning 
strategies. This deep uncertainty 
associated with potential impacts due to 
changing travel patterns and emerging technologies calls for a more comprehensive and 
exploratory approach to planning future mobility. Therefore, a new approach to modeling and 
simulation is needed. One such approach, exploratory modeling and analysis (EMA), embraces 
the examination of uncertainty by explicitly treating computational experiments (i.e., models) as a 
set of assumptions and hypotheses and aims to explore the impacts of the assumptions on the 
analysis of interest. 

Exploratory modeling approaches are preferred when critical information is unavailable (Bankes, 
1993). EMA has been used to better understand systems with deep uncertainty by calibrating 
models that explain the system, where: 

“Deep uncertainty exists when analysts do not 
know, or the parties to a decision cannot 
agree on, (1) the appropriate models to 
describe the interactions among a system's 
variables, (2) the probability distributions to 
represent uncertainty about key variables and 
parameters in the models, and/or (3) how to 
value the desirability of alternative 
outcomes.”—Lempert et al., 2003 
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• Some inputs to the system have deep uncertainty associated with them.

• There are various policies or levers available to a decisionmaker to affect the system.

• There are various outputs of the system which are of interest.

This differs from treating the model as a predictive tool that is an accurate surrogate to the real 
world (Bankes, 2003). 

The Federal Highway Administration (FHWA) Exploratory Modeling and Simulation Study 
focused on exploratory, rather than predictive, modeling of future transportation systems with 
particular attention to the impacts of new technology. One outcome of this project was the 
development of the Travel Model Improvement Program Exploratory Modeling and Analysis 
Tool (TMIP-EMAT). TMIP-EMAT was developed to help agencies manage uncertainties by 
illuminating interactions between transportation supply and demand on the urban surface 
transportation system through exploratory modeling and simulation; provide insights of potential, 
possible, plausible, probable, or preferred futures; and support robust regional transportation 
planning decisionmaking incorporating principles of risk management. 

1.1 Travel Model Improvement Program Exploratory Modeling and
 Analysis Tool  

A Different Way to Address Transportation Planning Questions 

There are many types of analyses where planners use modeling tools to provide quantitative 
information that can help make planning, investment, and policy decisions, as discussed in 
detail in section 2.2. This generally involves creating an analysis scenario and comparing results
to those reflecting a base condition. The analysis scenario may represent, for example, the 
execution of a specific investment, such as building or improving transportation infrastructure, 
the implementation of specific policy or pricing decision, a set of actions related to a long-range 
transportation plan, or proposed land use changes reflecting a specific development or land use 
plan. 

 

Typically, travel models are run for a single analysis scenario, created using the best guesses 
for various assumptions about growth forecasts; changes in factors that influence travel 
behavior (e.g., fuel costs); and the effects of technological changes that affect travel demand 
and supply (e.g., shared mobility providers). The core model itself contains a variety of 
assumptions about how travelers react to changes in the transportation environment, usually 
expressed as parameters calibrated to reflect observed travel behavior. 

So by themselves, travel models provide a snapshot of what is expected to happen under a 
specific set of assumptions, which provides limited information about the impacts of planning, 
policy, and investment decisions. Even if multiple scenarios are able to be run (e.g., low-, 
medium-, and high-growth scenarios), only a few data points are provided, with no context to 
examine the likelihood of specific performance measure results. 
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TMIP-EMAT offers a different way to 
address transportation questions. It can be 
used to systematically explore uncertainties 
in input variables and model parameters 
and the impacts that those uncertainties 
have on performance metrics. It is useful for 
examining model forecasts as a range of 
model outcomes rather than a single outcome, and it provides a mechanism for defining 
uncertainties and visualizing outputs. 

TMIP-EMAT can be integrated with existing travel modeling tools to facilitate the application of 
those models in an exploratory, rather than predictive, manner. It builds upon the evolving 
sensitivity and risk analysis approaches using travel models to forecast uncertainty, can be used 
to understand the effects of future mobility impacts on travel patterns, and incorporates 
exploratory-type visualizers and optimization search tools to present and analyze the results. 

TMIP-EMAT was developed by utilizing and building-upon the EMA Workbench, which is a tool 
for performing exploratory modeling and analysis (Kwakkel, 2017).The EMA Workbench 
includes features to define the uncertainty space (range of possible scenarios), define the 
decision space (range of policy/treatment/project levers), and run the simulations to populate 
the outcome space (performance measure products for each experiment). A diagram of the 
uncertainty, decision, and outcome spaces consistent with the EMA Workbench is presented in 
figure 1. The EMA Workbench also includes features to conduct different types of analyses like 
scenario discovery and robust search, which are discussed in more detail in section 3.4. 

TMIP-EMAT offers a different way to address 
transportation questions. It can be used to 
systematically explore uncertainties in input 
variables and model parameters and the 
impacts that those uncertainties have on 
performance metrics. 
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Figure 1. Flow chart. A diagram of uncertainty, decision, and outcome spaces. 

(Source: Federal Highway Administration.) 

TMIP-EMAT also builds upon the framework developed by RAND (Lempert, 2019) for 
understanding deep uncertainty, which is based on the following relationship: 

M = R (X, L) 

Here, M are the metrics that we are interested in understanding, or outputs of the model (i.e., 
performance measures), X are the set of uncertainties; L are the set of policy levers; and R are 
the relationship between X, L, and M, which in our case is the travel model. 

In addition to these types of uncertainties, RAND’s terminology (Lempert, 2019) talks about the 
presence of deep uncertainty, which is when the relationships (R) from the equation above 
cannot be agreed upon. In our case, the relationships refer to the travel model itself and, in 
particular, the structural elements of the model. This is of particular importance as new 
technologies have emerged over the last several years. While the travel modeling community 
has a lot of experience (collectively) in developing effective ways to forecast traditional modes, 
such as nonautonomous vehicles and transit, much less is known about forecasting the impacts 
of e-commerce or CAVs.TMIP-EMAT is designed to integrate with a core model, which is any 
application-/region-specific transportation model. The core model takes a collection of inputs 
and generates one or more outputs, or “performance measures,” of interest. Examples of a core 
model include, but are not necessarily limited to, the following: 

• Regional or statewide travel model.

• Activity-based travel model.

• Trip-based travel model.
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• Sketch planning or spreadsheet model.

• Microsimulation model.

• Corridor-level or mode-specific travel model.

The typical user of TMIP-EMAT is envisioned to be an analyst/planner/modeler who is familiar 
with the capabilities, and limitations, of the core model. The three major steps to working with 
TMIP-EMAT are defined in figure 2. 

Figure 2. Diagram. Travel Model Improvement Program—Exploratory Modeling and 
Analysis Tool process flow. 

(Source: Federal Highway Administration.) 

During Scoping, the user identifies the strategies to be analyzed and the measures to evaluate. 
The user also considers uncertainties that may affect the outcome of the measures and can be 
represented by parameters of or inputs to the core model. For most types of analysis and cases 
where the core model run time is nontrivial, TMIP-EMAT utilizes metamodels, which are 
regression models that estimate the core model outputs. The metamodels run very quickly 
(milliseconds) and, thus, can be used to produce measures comprehensively across the 
uncertainty space. Where the core model run time is trivial, as in a sketch model, TMIP-EMAT 
utilizes the core model directly. 

To populate the outcome space, TMIP-EMAT utilizes Monte Carlo simulation to sample across 
the uncertainty distributions. For each simulation run, the associated value of each uncertainty 
is set in the model (metamodel or core model), and the measure estimate is recorded in a 
database. The user can then examine and analyze the effects of their strategy levers on 
measures of interest under various uncertainties utilizing various analysis approaches. 
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A Different Way to Utilize Core Model Outputs 

TMIP-EMAT does not diminish the information that is provided by travel models, since the core 
model is an important part of the TMIP-EMAT process. It provides valuable additional 
information about the variation associated with the values of performance measures, rather than 
single point estimates, and about the potential of meeting various planning goals. 

TMIP-EMAT can produce results for performing risk analysis and exploratory analysis. The 
distinction between the two types of analyses is predicated on the user’s desire to analyze 
probabilities and produce performance measures with confidence intervals, as in a risk analysis, 
or to identify and describe the existence and extremes of best and worst case scenarios as in 
an exploratory analysis. 

Risk Analysis 

A risk analysis is dependent on the uncertainty variable distribution and presents the measure 
results in terms of the probability of each outcome (e.g., using a cumulative distribution function 
(CDF)), as shown in figure 3. The user can then assess the most likely value and overall range 
for each measure. In this situation, the user also may conduct a series of statistical significance 
tests on the performance measures across different strategies. A risk analysis may examine 
outputs, such as: 

• The range and probability of occurrence of performance measure values.

• Cumulative distribution function plots, which provide a visual perspective of the percentiles.

• The relative importance of an uncertainty variable contributing to the variability in the
outcome.

Figure 3. Chart. Example risk analysis outputs. 

(Source: California High-Speed Rail 2020 Business Plan Ridership and Revenue Risk Analysis.) 
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Exploratory Analysis 

The purpose of an exploratory analysis is not to describe the probability or likelihood of a certain 
outcome, but rather to identify scenario conditions and thresholds where different outcomes 
occur. An exploratory analysis should: 

• Identify the implications of uncertainty variables on the exploration space. 

• Help the user tell the story of how the strategies may fare under different conditions. 

• Identify what can be done to mitigate the worst-case outcomes and encourage the best-
case outcomes. 

• Provide an analysis of sensitivities and vulnerabilities. 

Below are three different approaches to an exploratory analysis, although practice may vary: 

1. Understanding the importance or success of strategies given certain conditions of the 
performance measures. 

2. Understanding the significance of the uncertainty variable on the impact of a performance 
measure (i.e., understanding what the area of concern is). 

3. Understanding the importance or success of strategies given certain conditions of the 
uncertainty variables. 

1.2 Organization of the Report 

The remainder of this report is organized as follows. Section II focuses on core model selection. 
Within this section, chapter 2.0 describes the types of modeling and analysis tools available to 
planners and how TMIP-EMAT can be used to enhance the use of particular tools for specific 
planning applications. Those readers who are experts in core models, such as travel models, 
may skip this section if they prefer. Section III presents detail information on TMIP-EMAT and its 
application. Within section III, the process of executing an exploratory modeling analysis using 
TMIP-EMAT is laid out in chapter 3.0. Chapter 4.0 summarizes two case studies using 
TMIP-EMAT that can help guide analysts and planners in using the tool in a variety of 
environments. Chapter 5.0 provides conclusing remarks. 
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Section II 

Core Model Selection 
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2.0 Choosing the Right Model 
As discussed in section 1.1, TMIP-EMAT takes advantage of an existing core model, often the 
main travel model used in a planning region. At a time when there is more uncertainty than ever 
about how people will be traveling both short term and longer term, it is the right time to identify 
how to make best use of the available tools to ensure that all of the right data needed to best 
analyze planning issues is made available, and to make sure that the modeling tools 
themselves are as good as they can be. This chapter discusses the importance of choosing the 
right model or modeling tool for planning purposes. This is important in ensuring that the TMIP-
EMAT tool is based on the best available core model (and is important in any planning 
application analysis regardless of whether TMIP-EMAT is being used). 

2.1 Defining Planning Analysis Goals 

The set of tools a planner may choose depends greatly on the values of the community and the 
conditions in the planning region, which in turn help determine the planning analysis goals. 
Before designing and developing a new model or adopting a model for a particular project or 
application, it is important to understand the planning analysis objectives. 

The factors and conditions that affect planning goals can vary widely; depending on the region, 
they may include the following: 

• The size of the region (in terms of population and land area). 

• Characteristics of nearby areas, such as other metropolitan areas or States, that may 
exchange substantial amounts of travel with the planning region. 

• How quickly the region is growing. 

• Economic characteristics (such as dominant industry types, presence of major attractions, 
universities, etc.). 

• Demographic characteristics (for example, age distribution and income levels). 

• Density of the highway system and roadway types. 

• Level and types of transit service provided. 

• Competition among auto, transit, and active transportation modes. 

• Parking supply in areas with high levels of travel demand. 

• Levels of truck volumes and freight movement, both within and passing through the region. 

• Presence of toll roads and managed lanes, and the potential for adding them in the future. 

• Penetration of new transportation modes such as transportation network companies (TNC) 
and shared mobility, which may vary throughout the region. 

• Various types of mobility options the community would like to examine or consider. 

• Institutional and political factors, such as pricing and taxes on fuel, parking, and public 
transportation, land use regulations, and school district boundaries. 
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• Levels of congestion and travel peaking characteristics. 

• Whether there are key seasonal and/or day of week considerations with respect to travel 
patterns. 

• The resources available for planning, modeling, and obtaining data. 

The factors and conditions listed above are not meant to be exhaustive, but they provide a 
starting point for thinking about the planning analysis needs of a region. They also provide the 
backdrop for defining the basic modeling requirements, which may include a set of performance 
measures that the model needs to be able to forecast, as well as the key policy questions for 
which the model will be used. Some common performance measures that are often output by 
models include the following: 

• Regionwide vehicle-miles of travel (VMT), vehicle-hours of travel (VHT), delay, and hours of 
congestion. 

• Corridor-level metrics (such as travel times, volumes, delay, reliability). 

• Air quality analytics and fuel consumption. 

• Transit use (such as ridership, revenue miles, passenger-hours). 

• Toll and managed lane volumes and revenues. 

• Travel time reliability metrics. 

• Levels of active transportation. 

• Transportation metrics for different groups of travelers (such as equity groups). 

• Truck and freight-related movements. 

Smaller regions where some of these factors are not important may prefer simpler models, 
which could include sketch planning tools or relatively simple travel models. In such cases, the 
types of policies that the model can examine will be more limited. Larger areas with significant 
congestion, complex multimodal transportation systems, roadway pricing, and higher 
concentrations of nonauto travel may require more sophisticated modeling tools. Rapidly 
growing areas need models that are sensitive to the land use and demographic changes that 
are occurring and are expected to occur in the future. As a result, it is critical that the model be 
designed to answer the questions at hand. 

2.2 Tailoring the Model to Planning Analysis Goals 

As the Transportation Research Board (TRB) Special Report 288 (Transportation Research 
Board, 2007) noted, there is no one single “correct” approach for all applications or all MPOs. 
“Travel forecasting tools developed and used by an MPO should be appropriate for the nature of 
the questions being posed by its constituent jurisdictions and the types of analysis being 
conducted.” It also is important that any model be designed to represent the transportation 
system supply and demand conditions in a satisfactory way, and that it be able to address the 
planning goals that it supports. The report How-to: Think About Model Design for Your Region, 
prepared for FHWA (Bernardin, 2018), discusses many of the practical and theoretical 



Uncertainty in Travel Forecasting: Exploratory Modeling and Analysis 
TMIP-EMAT: A Desk Reference 

July 2021 17 

considerations relevant to the choice between activity-based model, trip-based model, or hybrid 
model, including practical issues like data availability, calibration, cost, and model runtimes, as 
well as theoretical issues like aggregation and trip chaining. All of these issues are important to 
deciding among the main travel model types. 

The next section discusses model design considerations for answering tradtional planning 
questions while the subsequent section discusses model design for emerging mobility. 

Traditional Questions Posed to Travel Models 

The types of questions that a travel model may be asked to address are varied and include 
everything from traditional highway projects to emerging mobility issues. The model design 
should reflect these needs. How-to: Think About Model Design for Your Region also discusses 
the model design issues for many typical types of questions asked of travel models in the 
context of deciding between the main model types (activity-based, trip-based, and hybrid 
models). This section summarizes from the report some of the nuances involved in addressing 
specific types of questions within a given model among the main model design issues. 

Traditional Highway Projects 

These projects generally need to be able to answer the question of how highway capacity 
impacts congestion on the roadway network. Such projects include not only entirely new 
roadway facilities, but also capacity expansion to existing facilities. These types of projects are 
what traditional travel models were originally designed to assess, and generally can be 
evaluated with any network-based travel model. 

Air Quality Conformity Analysis 

These analyses are required by the Clean Air Act for large metropolitan regions and require 
agencies to generate estimates of emissions levels in the region. Emissions estimates are 
based on VMT estimates by roadway type and speed, which are standard outputs of network-
based travel models and, thus, are easily assessed with such models. 

Accurate air quality estimates also require a precise estimate of the breakdown of vehicles by 
type. While most travel models do not directly model vehicle type of passenger travel, models 
often include truck components, which explicitly estimate travel by trucks that are an important 
component of emissions estimates. 

Equity Analysis 

These types of analyses rely on segmentation of key outputs from the model on the basis of 
demographic or place of residence characteristics. As the report points out, segmentation of 
outputs by place of residence requires that the model be able to attribute each trip to a resident, 
which requires a more advanced model, such as a hybrid or activity-based model, though 
segmentation of home-based trips by place of residence can be done even with a trip-based 
model. 
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Likewise, segmentation of model outputs by detailed demographic features requires that the 
model segment the population by such features, which typically is only possible with activity-
based models since such models simulate individual travel decisions of each resident. Because 
these types of analyses require specialized model features, it is important to consider whether 
these analytical capabilities are important in the model design. 

Traffic Impacts 

These types of analyses try to answer the question of how new developments will impact traffic 
patterns. Like traditional highway projects, traffic impacts can be assessed with any network-
based travel model, though finer-grained network and zone resolution is better for these types of 
analyses. Unlike traditional highway projects, these analyses often require edits to the model to 
enhance the resolution in and around the new developments. The report also notes that hybrid 
and activity-based models may be better suited for these types of analyses due to better 
treatment of internal capture, though in the case of activity-based models, these benefits are 
largely outweighed by the presence of simulation variation. 

Highway Pricing 

These analyses deal with pricing (including tolling, parking fees, cordon fees, mileage-based 
fees, etc.) and how pricing impacts congestion and mode choices and generates revenue. 
There is a number of key factors that exist (or can exist) related to the types of pricing studies 
that can be analyzed with a travel model. In particular, the model should be capable of 
analyzing the key characteristics of the potential market for the priced facility, including those 
associated with willingness-to-pay (e.g., income and trip purpose); visitor versus resident travel; 
and trucks. Other model design considerations also are important for highway pricing. For 
instance, if the model is to be used to assess the impacts of time variable tolls, then the time-of-
day component of the travel model must reflect the time period variation of the tolling scheme. 

Peak Spreading 

Peak spreading travel phenomena can occur wherein travelers shift the timing of their travel to 
peak shoulders or nonpeak periods to avoid the heaviest congestion levels during the peak 
hour. These types of analyses usually are only required for models that represent large regions 
where heavy congestion exists in the peak periods. 

Travel Demand Management 

These strategies include various types of policies aimed at impacting travel demand in different 
ways, including, but not limited to, the following: 

• Telecommuting. 

• Alternative work schedules. 

• Transit subsidies like employer-provided transit passes. 

• Ride-home guarantees for public transit commuters. 
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• Carpooling incentives. 

• Parking management strategies. 

Most travel models struggle to evaluate policies such as these because they typically require a 
number of assumptions about how travel behavior will be impacted. For instance, the efficacy of 
a telecommuting incentive in terms of how many people telecommute as a result of a policy 
cannot be evaluated with a travel model. Assumptions can be made about the number of 
telecommuters and, given those assumptions, the effect on travel patterns can be evaluated. 
However, in that case, an assumption is still needed about how telecommuting will affect 
nonwork traveler for those telecommuters, which may or may not be valid. 

Transit Investments 

These analyses address the question of how changes in transit services impact transit ridership. 
The report suggests that there is little empirical evidence suggesting that activity-based or 
hybrid models perform better than trip-based models in terms of transit investments, and that 
the Federal Transit Administration (FTA) prefers use of its Simplified Trips-on-Project Software 
(STOPS) forecasting tool for New Starts project forecasts. 

Bicycle/Pedestrian Planning 

The key question for bicycle and pedestrian planning analyses deals with how infrastructure and 
urban design impact bicycle and pedestrian travel. The key factor in addressing these types of 
analyses in model design deals with the level of spatial aggregation in the model. Because 
bicycle and especially pedestrian trips tend to be shorter than auto and transit trips, the spatial 
resolution of the model needs to be higher to accurately predict how policy will impact bicycle 
and pedestrian travel patterns. The greater spatial resolution means that a greater amount of 
data and effort is needed as input to the model as it relates to zone structure, land use, and 
networks. 

Land Use Planning 

These analyses deal with the impact that land use policy and urban design have on travel. As the 
report points out, different travel models have differing capabilities to analyze land use policy. 
Many factors play a role in determining whether these types of analyses may be important to a 
region, including the role of changing demographics in the region, economic conditions, and the 
importance of promoting nonauto modes, where micro-level accessibility metrics can be 
important. 

Model Design for Emerging Mobility 

The previous subsection deals specifically with traditional questions asked of travel models for 
which methods have become standardized and/or situations when, typically, robust data is 
available for model estimation and calibration. However, model design in the context of 
emerging mobility considerations is different in this respect and applies to a variety of pressing 
transportation planning questions. Addressing these questions is made more difficult given the 
relative lack of data available to support the estimation and calibration of model components 
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that specifically address these issues. In this section, we address some of the key model design 
considerations required to analyze emerging policy and technology questions; and present “use 
examples” that take a deeper dive into how specifically four topics, currently of great interest to 
planners, can be and have been addressed in travel demand models. The four topics—CAVs, 
emerging modes, e-commerce, and work from home—are related to transformational changes 
in transportation supply and demand that have emerged recently and are still changing, or are 
expected to emerge soon. 

In most of these cases, the data available to assess policy sensitivity and/or quantify the 
impacts of emerging technology are lacking, either because the issue is too new or does not yet 
exist. Examples of emerging mobility questions range from the impacts of e-commerce on 
shopping travel to the adoption of CAVs and their impact on travel patterns. In order to address 
these issues using a travel model, the model should be designed in such a way that it is 
sensitive to these issues. This section discusses the emerging mobility trends. 

Connected and Autonomous Vehicles 

CAVs have been on the radar of transportation professionals for several years. They promise to 
enhance the efficiency of transportation system while offering improved accessibility. Obviously, 
no observed data yet exists to assess the impacts of CAVs on travel behavior or transportation 
supply. Nonetheless, many researchers have begun to anticipate the types of effects CAVs may 
have and develop approaches for handling CAVs in travel models. One example of such 
research is the National Cooperative Highway Research Program (NCHRP) Report 896: 
Updating Regional Transportation Planning and Modeling Tools to Address Impacts of 
Connected and Automated Vehicles (Zmud et al., 2018). 

Transportation Network Companies 

The emergence of TNCs has had a big impact on how people travel in many regions. TNCs 
provide taxi-like service (but at a lower cost), interface with customers using a user-friendly app, 
and provide more widespread coverage, making them more desirable to a larger portion of the 
population. Shared mobility options, such as vanpools, offer even lower costs, though with the 
disbenefit of shared service and lower levels of service. 

TNC usage has enjoyed a significant upward trend over the last several years prior to the 
COVID-19 pandemic. Between 2015 and 2018, the Pew Research Center found that the 
number of individuals that has used TNC services rose from 15 percent to 36 percent (a 
34-percent yearly increase), while the number of individuals that has not heard of such services 
dropped from 33 percent to 3 percent over the same period (Jiang, 2019). More recently, the 
number of daily active users of specific TNC services, such as Uber and Lyft, has increased 
more gradually. Uber use increased from about 1.1 million daily users of U.S. Android phones to 
1.2 million from the beginning of 2018 to the beginning of 2020, while Lyft use increased from 
about 550,000 daily users in 2018 to 700,000 in 2020, representing a total yearly increase of 
only 7 percent (Thibault, 2020). Neither of these measures is a perfect proxy for actual TNC use 
at a trip level; they suggest that, while growth in TNC usage continues, it is slowing overall. 
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Studies have shown that travel patterns of TNC trips are vastly different from those of trips using 
other modes of travel. In particular, the demographics of TNC users are unique (they tend to be 
younger, have higher education levels, higher income, and have fewer household vehicles) 
(Dias et al., 2017); the areas where TNC activity takes place tend to be centrally located in 
urban areas; and trip purpose, time of day, and day of week characteristics differ from other trip 
types. Roy et al. (2020) provide an extensive review of the various studies examining TNCs and 
the data that currently is available. 

E-Scooters and Bike Share 

Like TNCs, e-scooters and bike share programs have emerged over the last several years, 
impacting travel patterns in a number of ways. These technologies have provided a new 
transportation mode option for many trips, especially those in urban areas where e-scooter and 
bike share availability is highest. Moreover, they are providing new options for the first and last 
mile of transit journeys in many areas. 

E-commerce 

E-commerce has been steadily on the rise for a number of years, even prior to the COVID-19 
pandemic. It is widely accepted that shopping online has resulted in a reduction in shopping 
trips (Maat and Konings, 2018); and this has even been shown using survey data. In addition to 
a drop in shopping trips, e-commerce also results in a corresponding rise in urban freight and 
parcel delivery activity. And in recent years, parcel delivery vehicles have been trending toward 
a larger number of smaller vehicles to handle the demand for these services. An enhanced 
travel model can be used to address these questions. 

Telecommuting 

While telecommuting has been around for decades, advances in communication technology and 
data systems have allowed more workers the freedom to work from home in recent years. 
Telecommuting has long been studied as a transportation demand management concept to 
reduce congestion levels on roadways. 

Based on data from the Bureau of Labor Statistics (BLS), about seven percent of workers in the 
U.S. had the access to work from home as a benefit in 2019, which was up from about five 
percent in 2010 (DeSilver, 2020). However, with the COVID-19 pandemic of 2020, a major shift 
in telecommuting trends began as many workers were forced from their normal places of work. 
It still is unclear to what extent the trends that emerged during the pandemic will persist long 
term, or will return to their prepandemic levels in the future. 

As noted above, telecommuting levels saw a sharp rise during the COVID-19 pandemic of 2020, 
and it is yet unclear how those changes will persist in the future. As such, a great deal of 
uncertainty exists around telecommuting levels in the future. It is likely that as many companies 
shifted policies and made investments to allow for more telecommuting during the pandemic, 
the shift toward telecommuting that occurred during the pandemic will not totally disappear. 
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2.3 Model Design Examples for Emerging Mobility 

This section presents “use examples” that take a deeper dive into how specifically four topics, 
currently of great interest to planners, can be and have been addressed in travel demand 
models. The four topics—CAV, emerging modes, e-commerce, and work from home—are 
related to transformational changes in transportation supply and demand that have emerged 
recently and are still changing, or are expected to emerge soon. 

Connected and Automatic Vehicles 

As previously described, CAVs represent a technology that has not yet been realized. CAVs 
have the potential to cause major changes to the transportation system, how people use it, and 
even how people choose to live. Such changes include impacts on congestion, how far people 
are willing to drive, how transit is used, where people live and work, automobile ownership, and 
how young people travel, among others. The objectives of analyzing this technology are to use 
information we understand about travel behavior to inform sensitivities we incorporate in the 
travel model and forecast potential future impacts of CAVs. 

Key Questions 

There are a number of key questions related to CAVs from a policy perspective, including the 
following: 

• Will CAVs be able to utilize roadway space more efficiently than manually operated 
vehicles? 

One of the great promises of CAVs is that they will communicate with one another and be 
able to form platoons that allow for higher speeds and less congestion. This is very likely for 
a fully automated and connected fleet of vehicles. However, a great deal of uncertainty 
remains about roadway utilization when the vehicle fleet is mixed with some CAVs and other 
manually operated vehicles, as well as the extent to which CAVs will be able to be more 
efficient users of roadway space. 

• How will CAVs impact how individuals travel? 

This question is critical and has a number of subquestions around vehicle ownership, 
travelers’ values of time, travel time budgets, auto occupancies, and parking policy, among 
many others. 

• How will CAVs be adopted over time? 

Truly autonomous vehicles have not yet been realized. When CAVs first become available 
on the marketplace, they will likely be relatively expensive and, thus, cater to higher income 
consumers and others willing to pay the higher prices. As CAV technology matures, prices 
will drop, and market penetration will grow. The process by which CAV technology is 
adopted is highly uncertain and speculative at this point, but is critical for making travel 
forecasts. 

In addition to the natural market forces that will play into the adoption of CAV technology, 
there exists further potential for key policies to impact this technology adoption process. As 
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a historical example, seat belt laws forced automakers to start including this technology on 
all new vehicles. Similar types of laws could have impacts on how CAV technology is 
adopted. 

• When will CAVs be available? 

A related question is when this technology will be available for public consumption. This 
impacts how we think about both short- and long-range forecasting. 

Uncertainty Associated Connected and Automatic Vehicles 

Researchers have identified a number of ways in which CAVs may impact how people travel. 
The following provides a list of these potential changes and the reasonings for each: 

• Roadway Capacities. Higher roadway capacities will be possible, especially on limited 
access highways due to the ability of CAVs to coordinate movements. This effect, however, 
may be muted or even reversed in mixed fleet traffic if CAVs drive more cautiously and at 
slower speeds. 

• Improved Accessibility. For individuals who are unable to drive an automobile on their own 
(e.g., disabled or older children), CAVs may improve accessibility. Such mobility impaired 
individuals can be chauffeured by an autonomous vehicle. 

• Value of Time. Travelers’ sensitivities to spending time in automobiles may reduce as a 
result of being able to focus attention on nondriving activities (e.g., reading or work). 

• Parking. Parking needs and costs may reduce as CAVs can drop off a passenger and find 
parking elsewhere. Likewise, terminal times may be reduced. 

• Auto Operating Costs. Auto operating costs may reduce as the driving behaviors of CAVs 
may be more fuel efficient than human operations. On the other hand, in mixed fleet traffic, 
CAVs may drive more cautiously and at slower speeds, which may negate efficiencies in 
acceleration and deceleration patterns. 

• Auto Occupancy. Auto occupancy levels may reduce as people can more freely travel 
independently from one another, due to nondriver’s traveling independently or due to easier 
vehicle sharing. Vehicle sharing may increase between household members as a result of 
unoccupied CAVs (i.e., zero-occupancy CAVs) able to travel between different household 
members. 

• Vehicle Ownership. People may choose to own fewer vehicles due to the added 
opportunities for vehicle sharing. 

• Nonpassenger Trips. Trips made to transport an unoccupied CAVs from one place to 
another will emerge, such as to travel to/from parking locations and/or cater to the needs of 
multiple household members. 

• Induced Travel. Additional trips may be induced due to lower total costs of driving. 
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Modeling Connected and Autonomous Vehicles 

Modeling CAVs comes with some serious challenges, largely because the CAV future has not 
yet begun. No observed data exists to inform how people will use this new technology, what 
specific features it will have, or how quickly it will be adopted. As a result, modeling the effects 
of CAVs is highly speculative. 

Model Development 

There are multiple ways in which the travel demand modeling community has envisioned that 
CAVs will impact both travel behavior and congestion. These include a number of variables 
described below. For each, we explain how these effects can be addressed in a trip-based 
travel demand model system. 

• Market Penetration. Implicitly, all existing models have an assumption about the market 
penetration of CAVs, which is that it equals zero. Many studies examining CAVs have taken 
a simple approach of assuming full CAV market penetration, meaning all vehicles on the 
roadway network are CAVs. While a full market penetration scenario may one day occur, it 
is likely far into the distant future (at least 30 to 50 years). Considering a mixed fleet is a 
much more relevant scenario for most planning purposes. 

A full market penetration scenario makes the analysis simple because it does not require 
making assumptions about how different road users behave or about how mixed fleet traffic 
behaves. It also avoids the discussion of what assumption to make about CAV market 
penetration in any future year. 

However, for CAV mixed fleet analysis, market penetration must be considered as an 
explicit input to the model. Considering market penetration as an explicit input to the model 
is only relevant if the input has an effect on other components of the model. The input to the 
model may be user defined (e.g., the user specifies the market penetration as part of 
defining the scenario); or defined based upon a set of assumptions, such as market 
penetration projections. A user defined input to the model is probably more suitable for most 
applications since there is so much uncertainty associated with what market penetration 
levels will be in any future year. And also, given these high levels of uncertainty, market 
penetration is a key variable that could be used in an exploratory analysis, as described in 
more detail later. 

In the remainder of this case study, we consider market penetration as an explicit input and 
describe how that impacts other elements of the analysis. 

• Market Segmentation. Segmentation is only important if market penetration is assumed to 
be between 0 and 100 percent. Treating market penetration as an input necessarily requires 
that market segmentation be addressed. The following are two basic approaches for dealing 
with market segmentation in the context of CAVs: 

− First, CAV users can be treated separately from non-CAV users, each group with their 
own behavioral characteristics. 

− Second, market segmentation could be avoided by creating behavioral characteristics 
that represent a weighted average of CAV and non-CAV users. If market penetration 
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equals 20 percent, then non-CAV users would be weighted more heavily in the average 
(at 80 percent) and CAV users less heavily (at 20 percent). 

Averaging sensitivities or behaviors always comes with the risk of poorly representing all 
travelers’ true behaviors because each group actually behaves differently from the average. 
Thus, from a behavioral perspective, the first approach of considering CAV users and 
non-CAV users as distinct travel markets in the model is the preferred approach. In the 
remainder of this case study, we assume CAVs and non-CAVs are treated as distinct 
traveler groups in the model. 

• Highway Capacity Adjustments. One of the primary impacts touted of CAVs is that they
will reduce congestion because CAVs will be better able to more efficiently use the space on
the roads via shorter headways. Most experts believe that the primary benefits of CAVs from
a capacity standpoint will be achieved on freeways and expressways, whereas arterials and
collectors may see very limited improvements in effective capacity. In this case study, we
assume that capacity improvements are limited to freeways with no impact on arterials and
other roadway classes.

Market penetration plays an important role as well since a future where all vehicles on the
road are CAVs will have very different impacts on congestion than a mixed fleet scenario.
Because market penetration plays a role, it is often useful to develop a relationship between
market penetration and freeway capacity effects, such as the one shown in figure 4. In this
particular example, capacity increases monotonically with market penetration, though other
relationships may be suitable. For instance, a mixed fleet scenario could result in less
efficient use of highway capacity (particularly at low levels of market penetration), depending
on how CAVs interact with non-CAVs, which would lead to a relationship where the lowest
levels of capacity are somewhere between a market penetration of 0 and 1.

Figure 4. Chart. Formulaic highway capacity as a function of autonomous vehicle market 
penetration. 

(Source: Friedrich, 2016.) 
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Highway capacity adjustments typically can be made fairly easily by factoring the roadway 
capacities for all links in the network with certain functional classifications. 

Because most travel demand models assign traffic using aggregate traffic assignment 
algorithms, the market segmentation approach does not offer any benefit in more accurately 
reflecting changes to highway capacity resulting from CAVs in a mixed fleet scenario. 

• Auto Value of Time Adjustments. Another way in which CAVs may impact behavior is in 
how travelers perceive the time they spend traveling, which is controlled in the modeled by 
the auto value of time. The argument here is that if travelers do not need to focus their 
attention on the task of driving, then they can spend that time engaged in other activities 
(e.g., reading, working, or even sleeping). Typically, assumptions about the reduction in auto 
value of time range from a reduction of 10 to 50 percent (see, for example, Litman, 2017; 
Childress et al., 2015; Kroger et al., 2016; LaMondia et al., 2016; Zhou and Kockelman, 
2017; and Kohli and Willumsen, 2016; National Academies of Sciences, Engineering, and 
Medicine, 2018). This generally is consistent with the reductions in value of time often used 
for fixed guideway transit services, such as commuter rail, compared to bus transportation 
(typically 10 to 25 percent reduction; see FTA, 2008). 

While most travel models have explicit inputs for the value of time used in mode choice 
models, these inputs are not always easily modifiable for the auto mode in isolation. Often 
values of time are assumed to be fixed across modes or specific factors may be used for 
certain fixed guideway transit modes. As a result, changes to model code may be required 
to implement auto value of time adjustments. 

To implement this feature with the market segmentation approach, separate assumptions 
must apply to CAV travelers and non-CAV travelers. In particular, CAVs will enjoy the auto 
value of time adjustments, while non-CAV travelers will retain the original auto value of time 
of the model. 

• Parking Needs and Costs. Parking needs and costs may be reduced as CAVs can drop off 
a passenger and find parking elsewhere. Likewise, terminal times may be reduced. 
Reductions in parking costs may be assumed to be anywhere from 0 to 100 percent. It is 
important to note that Government legislation may impact the extent to which such activities 
are allowed (e.g., zero-occupant parking journeys may not be allowed). 

This feature can be implemented in different ways depending on how parking costs are input 
to the model. For instance, the mode choice model coefficient specifically related to parking 
costs (if one exists) could be reduced, parking cost attributes at the zonal level (if they exist) 
could be reduced, or parking cost constants by land use category (if they exist) could be 
reduced. 

When market segmentation of CAVs and non-CAVs is used, implementation comes with 
additional challenges and may require custom changes to model code. 

• Fuel Costs. Auto operating costs may be reduced as the driving behaviors of CAVs may be 
more fuel efficient than human operations. On the other hand, in mixed fleet traffic, CAVs 
may drive more cautiously and at slower speeds, which may negate efficiencies in 
acceleration and deceleration patterns. These potential benefits are often ignored in the 
development of CAV scenarios for travel demand models. As a result, there are few 
examples of the assumptions that have been made in practice to adjust fuel costs. 
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Typically, auto operating cost is a direct input to travel models and, thus, can be adjusted 
directly. A market segmentation approach may require custom coding that allows the auto 
operating cost input to be scaled by market segment (e.g., non-CAVs would be scaled by a 
factor of one, while CAVs would be scaled by the adjustment factor for CAVs). 

• Nonpassenger Trips. Nonpassenger trips are those generated by CAVs where there are 
zero occupants in the vehicle. These arise as a result of CAVs dropping off or pickup up 
passengers in locations with limited parking where the CAV parks offsite. They also can 
arise if CAVs return home to serve the disparate needs of persons from the same 
household. 

Nonpassenger trips require special procedures to generate these trips and add into 
assignment procedures. This typically is done by examining the number and location of CAV 
trips generated by the model. For instance, trips with attraction ends downtown may be 
prime candidates for parking somewhere different than the actual trip end. These trip 
attractions would then serve as trip productions of nonpassenger trips. The locations of trip 
attractors for nonpassenger trips would need to be assumed, based on available parking 
space, parking costs, or some other measures. 

A market segmentation approach requires that the nonpassenger trips apply only to demand 
generated by CAVs, while non-CAVs generate no nonpassenger trips. This is 
straightforward in a market segmentation approach as the CAV demand is generated in 
separate trip tables from non-CAV demand. 

Model Validation 

Given the aforementioned lack of observed data, traditional model validation of CAV impacts is 
not possible. However, sensitivity testing is critical to understand how the modeled features of 
CAVs impact the results. Sensitivity testing should focus on ensuring that individual variables 
that are updated or changed as part of the CAV analysis provide reasonable sensitivities as 
intended. 

Forecasting 

Given that CAVs have not yet hit the marketplace for consumers and observed data does not 
yet exist, a great deal of uncertainty exists around how CAVs will affect travel. For instance, the 
adoption of CAVs is expected to follow an S-curve development pattern historically exhibited by 
new vehicle and other technologies. Figure 5 illustrates an example of this pattern over a 50-
year horizon. Younger and higher income households are more likely to be among the first 
adopters of the new technology. 
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Figure 5. Chart. Autonomous vehicle sales, fleet, and travel projections. 

(Source: Litman (2020).) 

CAV market penetration rates are important assumptions for evaluating the CAV impacts on 
travel, but are not the only source of uncertainty. For example, a great deal of uncertainty also 
exists in how CAVs will impact roadway capacities, travel time sensitivities, and parking costs at 
different levels of CAV market penetration. Either additional assumptions need to be made to 
establish the relationship between these other CAV impacts and CAV market penetration, or 
each of these CAV impacts can be examined independently through exploratory modeling to 
explore the range of potential effects on the transportation system or specific policy analysis. 

Emerging Modes 

The last several years have seen a proliferation of new modes, including TNCs, scooters, and 
e-bikes. The characteristics of these modes and their use have changed dramatically in a short 
period of time. Increasingly, transportation planners are asked to evaluate how these modes are 
impacting regional travel patterns now and in the future. 

Key Questions 

There are a number of key questions related to emerging modes from a policy perspective, 
including the following: 

• What is the congestion impact of TNCs on the transportation system? 

TNCs provide a taxi-like service that is accessible to many more individuals across larger 
geographies than traditional taxi services. Meanwhile, TNCs can effectively consume much 
more of the roadway space per passenger trip served due to idling and repositioning of the 
vehicle between passenger trips. How do these elements impact congestion in a region? 
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• How will growing TNC usage impact the transportation system in the future? 

Growing TNC usage allows people to have better, door-to-door accessibility options that 
travelers have traditionally only been able to obtain from the auto mode. This enhanced 
accessibility could potentially allow travelers to own fewer cars in the future and rely more 
heavily on shared mobility options, including traditional transit, TNCs, and other emerging 
shared mobility modes. What impacts will these potential changes have on the 
transportation system of the future? 

• Are TNCs competing more with transit or auto mode? 

This is a critical question as traditional transit mode shares were on the decline across the 
country for several years prior to the COVID-19 pandemic. There is at least anecdotal 
evidence that TNCs are competing with transit more so than serving as first-/last-mile 
complements to transit. From this perspective, will traditional transit services, which many 
disadvantaged populations rely on, continue to be viable as TNC mode share increases? 

• What are the safety impacts of shared mobility modes? 

Shared mobility modes typically are mostly available in the central urban areas of large 
metropolitan regions. In many such places, particularly where traditionally the auto and 
transit modes have reigned, travelers are having to learn how to share the highway network 
space with these new modes. Anecdotal evidence suggests that safety concerns have 
emerged as a result. 

• How do we manage curb and sidewalk space? 

In some locations, e-scooters are prohibited from sidewalk use. However, most e-scooter 
and bike share programs utilize public/sidewalk space for device storage, which creates less 
space for pedestrians, as well as driveway access concerns. Meanwhile, TNCs have the 
potential to consume large amounts of curb space when not in transit. In some locations, 
dedicated TNC drop-off and pick-up zones have been created, but in many other locations, 
such zones do not exist. Consumption of curb space can create parking and delivery vehicle 
problems that need to be addressed. 

Uncertainty Associated with Emerging Modes 

Emerging modes may have a number of related impacts on how people travel. Some of these 
impacts are listed below. 

• Improved Accessibility. Because TNCs have become ubiquitous in large metropolitan 
areas, they provide a transportation option for traveling longer distances when it otherwise 
may be much more difficult. For instance, someone who takes transit to work may be able to 
utilize a TNC to travel to a farther location to go for lunch or a work meeting. Likewise, 
shared mobility options may provide a faster transportation option than walking if vehicles 
are readily accessible such as in a downtown location. 

• Vehicle Ownership. Because of improved accessibility offered by these emerging modes, 
private vehicle ownership may become less important for mobility. This likely will impact 
vehicle ownership levels over the long term. 
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• Transit Use. Likewise, because the TNC mode, in particular, provides a more personal
transportation option, it may compete directly with transit for certain types of trips. This may
result in a long-term downward trend in transit ridership. On the other hand, there are likely
cases, especially longer-distance commuting trips where TNC may serve as a first-/last-mile
option that is complementary to transit.

Data Availability 

In most regions, usage of these modes remains relatively low. The National Household Travel 
Survey (NHTS) was conducted in 2017 and contains a robust sample of TNC users nationwide, 
with about 0.5 percent combined mode share of taxi and rideshare. As shown in table 1, only 
8 percent of NHTS respondents reported using TNCs in the previous month. Scooters and 
e-bikes are even newer modes, and so even less data is available, but usage of these modes
has been increasing over the last few years. Furthermore, there are certain areas, particularly in
the more urban and centralized areas, where usage of these modes is much higher than
national averages; in these areas, understanding trends is even more critical.

Table 1. National Household Travel Survey rideshare app use in past 30 days. 

Rideshare App Use 
(Times per Month) 

Nationwide 

Unweighted 
Persons 

Unweighted 
Percentage 

Weighted 
Persons 

Weighted 
Percentage 

0 246,551 93% 276,271,841 92% 

1 4,942 2% 6,245,758 2% 

2 4,413 2% 6,128,432 2% 

3 1,779 1% 2,544,664 1% 

4 1,612 1% 2,485,143 1% 

5 1,456 1% 2,458,909 1% 

6 769 0% 977,803 0% 

7+ 2,376 1% 4,017,215 1% 

Total 263,898 301,129,765 
Overall Average per 
Person 

0.01126 

(Source: National Household Travel Survey (2017).) 

Transportation Network Companies 

The information that currently is available on TNCs comes from several sources. First, recent 
household travel surveys have been recording TNC activity and have been used to examine the
unique characteristics of TNC travel. To the extent that many characteristics of TNC trips are 
similar across different regions, these surveys are useful for understanding who and in what 

 

– –
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circumstances travelers are using these services. Table 1 provides a summary of rideshare use 
among NHTS respondents. 

Using local household travel survey data would be better for estimating localized demand for 
TNCs, although many regional survey datasets may suffer from small sample sizes of trips 
made by the mode, making estimation and calibration of models more challenging. 
Nonetheless, these challenges are likely to be mitigated as usage of the mode increases and 
newer survey datasets are collected. 

Several intercept surveys specifically of TNC users also have been conducted in cities, such as 
San Francisco (see Rayle et al., 2016) and Boston (see Gehrke et al., 2018). Targeted surveys 
such as these can provide detailed information on local use patterns. 

While survey data is useful for understanding certain characteristics of TNC trips (such as 
demographics, travel purpose, time of day, and day of week), due to small sample sizes it may 
be less useful for understanding other TNC trip characteristics that also are important (such as 
overall trip rates, key drop off and pick up locations, and average wait times). Furthermore, 
survey data typically only reflects travel by residents in a region, while a large share of TNC 
travel is made by visitors to the region. As a result, transportation professionals have made 
attempts to obtain TNC operator data. Though these efforts have not been successful on a 
widespread basis, TNC operator data has been made available either for specific projects or 
publicly in a few locations, including San Francisco, Austin, Chicago, and New York. Efforts to 
examine these data have demonstrated key characteristics of TNCs and contrasted those 
against other travel, including taxis (Castiglione et al., 2016; Komanduri et al., 2018; Roy et al., 
2020). However, the TNC market may varyfrom one region to another, and these data may not 
be useful for model calibration in regions other than the specific region in which data was 
collected. 

TNC operator data also may contain information related to the preponderance of repositioning 
trips made by TNC drivers in between drop-off of one customer and pick-up of the next. 
Caution should be executed in transfering these data to regions other than the region in which 
data was collected, but the data may be useful in assessing general trends in terms of land use 
or key location types (e.g., airports and hotels) where TNC pick-ups typically occur. 

E-Scooters and Bike Share

As with the TNC mode, the data for these technologies is limited, since these modes have only 
emerged in the past several years, and these modes only make up a small fraction of overall 
mode shares in most regions. They also serve a trip market that is less well studied and 
understood, tending to serve very short trips often in the urban core. These typically are 
nonhome-based trips and have a high prevalence of use by visitors to a region. While recent 
household travel survey datasets might be useful to support identification of trip types using 
these modes, sample size issues are likely to be an issue in many regions until these modes 
gain more traction with higher mode shares. 

Another option for obtaining data related to these modes lies with the e-scooter and bike share 
operators. While there has been little success in agencies obtaining data from TNC operators 
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without legislation that requires certain datasets be made public, there is much less experience 
in working with micromobility operators in a similar fashion. Efforts to engage these operators 
may be another way to obtain more and useful data. 

Data related to the availability of these modes in different areas of a region is likely more readily 
available. If docking stations exist at predefined locations, it is possible to code the accessibility 
of these modes based upon the proximity of such stations. In some regions, dockless 
equipment is available; in which case, assumptions may be needed on availability that vary 
based upon land use or area type. If count data is available, that information can be used to 
help calibrate models. 

Modeling Emerging Modes 

In this section, we describe a hypothetical case study for introducing emerging modes in the 
model development process of a trip-based model. (It should be noted that many travel models 
do not have an explicit visitor model component, and visitors to the model region likely make up 
a disproportionate share of TNC passengers in a region, meaning that many TNC trips may not 
be directly considered.) 

There are three key considerations that are addressed here for modeling these modes: 

1. Mode Choice Model Development. Mode choice model design is a critical component to 
incorporate these new modes into the travel modeling framework. 

2. TNC Repositioning Trips. These are nonpassenger trips made by TNC drivers to 
reposition themselves from the drop-off location of one passenger trip to the pick-up location 
of the next. 

3. Spatial Resolution. Due to the shorter distance trips typically served by e-scooters and bike 
share modes, the model’s spatial resolution is more critical. 

These elements are considered more carefully below. 

Data Preparation 

To add these modes to the mode choice model, procedures for generating the modal attributes 
of these modes must be created. While it may be possible to create entirely new procedures for 
generating these attributes, in this case study, we consider approaches that allow for reusing 
old methods already in place in many models: 

• Travel Times. TNC zone-to-zone travel times can be borrowed from other auto modes. 
Similarly, shared mobility modes’ speed characteristics are similar to those of a standard 
bike, and, thus, travel times can be borrowed from those used for the bike mode. While it is 
important to consider that motorized shared vehicles may be prohibited from certain facility 
types like bike trails, most trip-based models do not have that level of detail for the bike 
network and rely on the highway network for generating bike travel times. 

• TNC Fares. TNC fares are important because, unlike traditional taxis that have fixed fare 
structures related to trip distance or zone definitions, TNC fares vary widely depending on 
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demand and supply levels (e.g., surge pricing) and by type of service (e.g., shared 
services). While it may not be feasible to account for these fare structures directly in the 
model, an understanding of the fare structures is needed in order to develop an appropriate
approximation that can be used in the model. For example, the Uber website 
(https://www.uber.com/us/en/price-estimate/) publishes fares that can be validated using 
randomly sampled fares from the app. The fare structure usually has a flat fixed minimum 
fare plus a distance-based rate adjustment. When multiple operators exist in the same area, 
a composite fare structure that approximates the average users’ experience can be used. 

Another element of TNC fares is differential pricing for different types of service. In 
particular, both Uber and Lyft offer shared ride services where a user agrees to ride with 
other passengers along their journey, potentially increasing total travel time, but at a 
reduced fare. To accommodate these different fare structures, as well as the difference in 
attractiveness and travel times of the different modes, wholly separate alternatives could be 
used in the mode choice model. However, the prevalence of shared TNCs may not be high 
enough to warrant modeling as a separate mode. 

• Shared Mobility Fares. Shared mobility modes also include a fare component. These 
modes typically charge a flat fare to use a scooter or bike and add an additional fare that 
varies according to the amount of time the vehicle is in use. However, characteristics of the 
fare structure within the region of analysis should be examined carefully before making 
assumptions related to fares for bike share and scooters because fare structures can vary 
considerably between regions. When multiple operators exist in the same area, a composite 
fare structure that approximates the average user experience can be used. For the 
purposes of this case study, we assume that shared mobility mode fares can be generated 
as a function of a constant and travel time. 

• Wait Times. Wait time is another key attribute of TNCs, and different options exist for 
handling it. One simple approach is to assume wait times vary by area type, since more 
TNCs operate in the urban centers of regions than in rural areas. In the example above 
where fares were randomly sampled using the app, wait times also were collected and could 
be summarized by area type. However, it is important to consider that individuals using 
TNCs are often aware of typical wait times and may be able to minimize wait by scheduling 
their trip in advance. 

• Accessibility Measures. Accessibility measures also are an important attribute that could 
be included in the mode choice model for both TNC and shared mobility modes. This is 
particularly true for shared mobility since some of the accessibility characteristics associated 
with TNCs are the result of differential wait times, which can be accounted for directly as 
discussed above. 

Shared bikes and scooters, however, are often only available in the urban core of a region. 
If docking stations are required, then availability depends on the locations of those stations. 
Docked service availability can be approximated by estimated (walk) access times to the 
docking stations from each zone. If dockless equipment is used, then an approach similar to 
the wait times for TNCs can be used, where access times vary based upon area type. 
Furthermore, during peak periods (typically midday and PM peaks), the availability of these 
vehicles may be more limited due to high usage levels of deployed vehicles. This temporal 
variation in availability can be handled through shadow prices, though that level of detail in 

https://www.uber.com/us/en/price-estimate/
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modeling probably is not needed for most applications. Time-of-day factors that represent 
differences in demand by time of day are likely sufficient. 

In addition to the attributes of these new modes, the geographic resolution is another element 
that deserves consideration in model design. While not critical for TNC modes, one of the key 
challenges with shared mobility modes, similar to walk and bike modes, is that these modes 
typically are used for short-distance travel. As a result, the geographic resolution of the model 
can be very important for accurately forecasting these modes. Microzones or parcels, which 
replace traffic analysis zones (TAZ) as the spatial unit of measurement for mode choice in some 
activity-based models, are more suitable for modeling these modes. 

Model Estimation 

Mode choice model design is a critical component to incorporating these new modes into the 
travel modeling framework. At a minimum, a TNC mode or a shared mobility mode could be 
added to the mode choice model. A variety of different correlation structures (e.g., in a nested 
logit model formulation) could be envisioned for including these modes. 

In addition to acting as primary mode options, both TNC and shared mobility modes have the 
potential to provide access or egress options for using transit (so-called first and last-mile 
options). Because the bike mode offers similar level of service characteristics to shared bike 
and scooter modes with respect to travel times and given that bike access/egress is often not 
even included explicitly as a mode option in these models, explicit treatment of shared bike and 
scooter modes is not necessary. TNCs have distinctly different characteristics than other auto 
and walk access/egress mode options, including the following: 

• Unlike park-and-ride, TNC mode could be used as either an access or egress mode (or 
even both). 

• Cost structures and wait times for TNC are different from other auto modes. 

Therefore, depending on the structure of the transit modes in the mode choice model, TNC 
access and egress to transit could be explicitly included as a mode within the mode choice 
model. 

More recent survey data (collected in the last few years) likely contains trips taken by the TNC 
mode, and potentially shared mobility options. Recent transit onboard survey data also may 
contain transit trips that use TNC access and/or egress. However, even in these best-case 
scenarios, the data may be thin due to the modest overall share of these trips. Given this 
scarcity of data, especially shared mobility modes, it may not be possible to estimate 
parameters of the model directly. 

In cases where model parameters cannot be estimated using local data, asserting model 
parameters may be acceptable. Travel time and cost sensitivities are often constrained to be 
identical across all modes in mode choice models, and estimates of these sensitivities for 
standard modes could be applied to these emerging modes. Mode constants could then be 
calibrated. If the mode choice models are estimated as nested logit models with specific 
correlation structures, asserting the correlation structures for new emerging modes in the model 
is less straightforward, but can be done. Some potential guidelines include: 
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• Models with a motorized nest (that includes auto and transit) also can include TNC as a 
main mode. 

• Nonmotorized nests could include shared mobility modes (note that even though e-scooters 
may technically be motorized, they share more in common with nonmotorized modes). 

• TNC is likely distinct enough from auto or transit to fall into nests specific to either of those 
mode clusters, or as its own nest. 

It is important to recognize that these are not hard and fast rules. Different approaches may be 
suitable in different circumstances. 

Repositioning Trips 

Repositioning trips are specific to the TNC mode. No standard approach for incorporating TNC 
repositioning trips in travel models currently exists, and, thus, ad hoc methods have been used. 
In an activity-based model, it is possible to explicitly link personal travel TNC trip ends to create 
a trip table of repositioning trips, and similar, less refined approaches may work for trip-based 
models. 

One option is to model reposition trips by balancing the TNC demand trip table. The trips 
generated by the passenger travel model are balanced by adding additional vehicle trips to the 
trip table. These additional trips were assumed to be the zero-occupant vehicle trips between 
drop-off locations and pick-up locations. 

This method requires a number of assumptions. For instance, if we observe one TAZ with 
100 drop-off trips and 50 pick-up trips, a simple solution would be to add 50 zero-occupant trips 
with a starting point in this TAZ and destination in some other TAZ. However, this method 
assumes that the other 50 drop-off trips have a pick-up trip in the same TAZ, which is not 
necessarily the case. It could be that all 100 drop-offs have a subsequent pick-up in a different 
TAZ, and all 50 pick-ups have a previous drop-off in a different TAZ. 

TNC operator data can help to estimate the relationships between repositioning trip ends. 
Region-specific data is best, but if such data does not exist, TNC operator data from other 
regions provides a baseline from which to inform assumptions specific to another region. The 
type of model that can be used here is a trip distribution model (either a gravity model or a 
destination choice model). In either case, the model matches the drop-off locations to 
subsequent pick-up locations, similar to the trip distribution methods already in use by travel 
models. Once a trip table for these trips is generated, these vehicle trips should be assigned to 
the network during traffic assignment step. 

However, even these methods leave out two important features of TNCs. First, it may not be 
possible to account for destination-less repositioning, for instance, if the TNC driver drops off a 
passenger and immediately begins driving without having another passenger locked in to be 
picked up. Second, since many travel models do not have an explicit visitor model component, 
and visitors likely make up a disproportionate share of TNC passengers in a region, the overall 
levels of repositioning trips may be vastly underestimated. Explicit representation of visitor travel 
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in the travel model would improve the realism of both the overall model system, as well as the 
TNC repositioning component. 

Model Validation 

There are two key ways that models should be validated when incorporating emerging modes. 
First, mode choice model constants must be well-calibrated to current levels of mode usage. 
While the survey data available for estimating mode choice models with these new modes may 
be thin, in most regions, there is more data available to estimate current levels of use for these 
modes. Creating calibration targets for each new mode will allow for the calibration of modal 
constants to ensure the model generates a reasonable number of trips in the base year model. 

Secondly, sensitivity testing provides information about the reasonability of the model results. 
Sensitivity tests may include adjusting sensitivities to attributes like travel times and costs or 
adjusting assumptions about modal attributes like fare structures and/or waiting times. Other 
sensitivity tests may be less specific to these modes, but could provide more information about 
the model’s response to larger regional questions. For instance, a common type of sensitivity 
test is to change land use assumptions. Increasing the size of the urban center (by increasing 
densities) as a sensitivity test might be expected to result in an increase in usage of emerging 
modes. 

Forecasting 

Emerging modes have been gaining market share for the past several years due to their added 
convenience and improvements to accessibility. Forecasting of emerging modes comes with a 
number of associated uncertainties; all of which are potential candidates for exploratory 
modeling, including the following: 

• Overall use levels continue to rise. Exploring scenarios where the overall usage rates grow 
due to uncontrolled attributes could provide value (e.g., by manipulation of the modal 
constants). 

• In the future, improvements in modal level-of-service attributes may be possible. For 
instance, in the case of TNCs, CAV technology may make manually operated TNCs 
obsolete. Given that the driver of the TNC is the greatest cost for providing TNC service, this 
could drastically reduce the rates charged by TNC operators. 

• As described above, asserting model parameters for these modes may be necessary due to 
lack of data currently. These asserted model parameters are great options for exploring 
uncertainty in the model specifications. 

E-commerce 

The steady rise in e-commerce activity over the past several years has had important impacts 
on transportation. Accounting for these effects within our travel modeling tools can be quite 
complex. As discussed earlier, not only has e-commerce resulted in a reduction in shopping 
trips (which can be measured using survey data), but it also has caused the proliferation of 
business and home parcel delivery trips at rates never before realized. As a result, there are two 
key elements to forecasting the effects of e-commerce using a travel model: personal and 
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household shopping effects and freight and delivery vehicle impacts. In this case study, we 
describe an approach to explicitly consider the levels of e-commerce in a travel model. 

Key Questions 

There are several key questions related to work-from-home behavior from a policy perspective, 
including the following: 

• Will the rise of e-commerce continue to affect personal shopping travel patterns? 

Conventional wisdom suggests that people are traveling less for shopping purposes than in 
the past due to the availability of online shopping. In fact, data over the past couple of 
decades supports this idea. However, it is difficult to parse out the cause and effect of 
increased online shopping and decreased shopping related travel. Presumably, increased 
online shopping is having some effect, but other ancillary drivers may also be playing a role, 
like consolidation of retail businesses and larger box stores, which can cater to multiple 
shopping needs (rather than specific niche shopping needs). 

• How has e-commerce impacted parcel delivery and how has it impacted other freight goods 
movement? 

With the increase in e-commerce, there also has been a growth in parcel delivery travel 
activity over recent years. There is likely a direct correlation between the levels of 
e-commerce and volume of parcels, but understanding this relationship is important to 
crafting policy. 

Further, while in the past, the parcel delivery vehicle fleet largely consisted of single-unit 
trucks (e.g., UPS and FedEx), more recently many parcel delivery vehicles are smaller light-
duty vehicles. These changes have an impact on the delivery patterns. Larger vehicles 
obviously can carry more volume but may be less efficient both in terms of fuel consumption 
and time. 

• What are the levels of parcel delivery? What types of travel patterns do parcel deliver 
vehicles have (e.g., routing of delivery vehicles)? 

Simply measuring the levels of parcel deliveries can be quite challenging since data is not 
readily made available to the public. Nonetheless, measuring these levels is critical to 
determining a baseline of parcel delivery activity and relating this to e-commerce activity. 

The number of deliveries also may be impacted by volume. For instance, a customer that 
receives a lot of parcels may have many parcels delivered in a single delivery. Conversely, 
each parcel may be delivered separately. These two options have very different implications 
for the amount of travel generated by each parcel. Speedy delivery guarantees from 
shippers also may have an impact on whether parcels are delivered in one shipment or 
many (i.e., if delivery has been guaranteed in one or two days, then it is less likely that 
parcels can be packaged together). 

Another important consideration is the scheduling of parcel delivery stops, which is typically 
handled by a shipper. While the algorithms for scheduling stops are proprietary, it may be 
possible to replicate these processes using standard approaches (e.g., the traveling 
salesman problem). 
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• Does an increase in online shopping and parcel delivery increase or lessen congestion? 

There are differing schools of thought with regard to whether e-commerce, as a whole, has 
resulted in more or less efficient distribution of goods. E-commerce has essentially replaced 
some individual personal shopping trips (e.g., between home and shopping locations) with 
delivery stops made as part of a longer parcel deliver vehicle tour. While it is likely true that 
each individual delivery trip is shorter distance and more efficient than a roundtrip shopping 
trip, a person making a shopping trip may be more likely to purchase multiple goods with a 
single trip; whereas parcels may more often be of a single good, requiring multiple parcel 
delivery stops. These tradeoffs currently are not well understood. 

Furthermore, some research has suggested that people tend to have relatively fixed travel 
time budgets (Mokhtarian and Chen, 2004). That is, individuals are willing to travel a specific 
amount of time per day (e.g., one hour), and they tend to fill this time budget. In that case, a 
reduction in personal shopping travel may be replaced with a commensurate increase in 
travel for other purposes (e.g., willingness to travel farther for work). The result would be an 
increase in parcel delivery travel with no change in the amount of total personal travel. 

Uncertainty Associated with E-commerce 

E-commerce may have a number of different impacts on travel. As noted above, e-commerce 
reduces the need for personal shopping travel while increasing parcel delivery travel. These can 
have a myriad of impacts on how people travel: 

• Travel budgets. The reduced personal shopping travel may offer the opportunity for more 
personal travel for other purposes. Research has shown that total travel budgets seem to be 
fixed over time, even when travel becomes more efficient. 

• Activity patterns. Even if travel budgets are not fixed, the reduced need to shop in-person 
frees up time in people’s schedules for other activities. Understanding what these activities 
are and how they are substituted is necessary to forecast the impacts of a changing 
e-commerce landscape. 

• Parcel deliveries. As noted above, e-commerce likely has a direct correlation with the 
number of parcel deliveries in a region. 

• Timing of travel. Personal shopping travel is often associated with nonpeak travel patterns 
(though this is not always the case). Reducing such travel has the potential to adjust time-of-
day distributions in a region. Furthermore, the timing of parcel delivery travel has unique 
characteristics as well, and understanding those is important for forecasting the impacts of 
e-commerce. 

Data Availability 

National economic data can provide big-picture trends in the growth of e-commerce over time. 
Figure 6 shows national commerce data from the U.S. Census for year-by-year e-commerce 
retail trade as a percent of total retail trade. E-commerce, as a share of total retail, has grown 
from less than 1 percent in 1998 to about 10 percent in 2018. While this trend will inevitably 
level off at some point, if recent trends continue in the short term, e-commerce as a share of 
total retail could eclipse 20 percent by 2025. In theory, these trends should continue to reduce 
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the number of personal shopping trips while increasing the number of parcel delivery trips. One 
key question deals with how to predict e-commerce trade into the future. 

Figure 6. Chart. E-commerce retail trade sales in U.S. as a percentage of total retail sales. 

(Source: U.S. Census E-commerce Statistics, available at: 
https://www.census.gov/programs-surveys/e-stats/data/tables.html.) 

The drop in shopping trips over the last 20 years can be measured using historical and more 
recent household travel surveys. National data on trip rates by purpose from the NHTS datasets 
for 1990, 1995, 2001, 2009, and 2017 are shown in figure 7. The figure clearly shows that 
person trip rates overall have been dropping since 1995, and that this drop has been fueled by 
reductions in shopping trips by about -33 percent from 1995 to 2017. 

https://www.census.gov/programs-surveys/e-stats/data/tables.html
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Figure 7. Bar chart. Trends in trip rates by purpose over years from national survey 
datasets. 

(Source: McGuckin and Fucci, 2018.) 

Further analysis of data may look into how these trends in shopping travel have occurred across 
different segments of the population. It could be that higher income households with greater 
access to the Internet and online shopping have seen larger drops in shopping travel overall 
than lower income households. Vehicle availability also may be related as households with 
insufficient vehicles may have more incentive to use online shopping to fulfill these needs. 

Trends in delivery vehicles are not easily measured. Data from parcel delivery companies is not 
readily available as it is proprietary. While some parcel delivery information may be available 
from some Global Positioning System (GPS) truck databases (e.g., INRIX or StreetLight truck 
data), these data vendors will not release the specific truck companies that form their samples. 
In the future, the transportation planning community should push for companies like Amazon, 
UPS, and FedEx to release parcel delivery and truck information that can be used for planning 
purposes. In the meantime, however, other datasets may be useful, such as Rakuten data 
(https://www.rakutenintelligence.com/), which can provide information on where parcels are 
being delivered and by which company, but only for the sample of users of their service. 

Modeling Shopping Activity 

In this section, we outline our case study illustrating the steps that can be used to address the 
impacts of e-commerce on shopping activity in a trip-based model. Note, this example focuses 
only on household travel and not modeling of truck movements (i.e., parcel delivery trips), which 
is discussed in the next section. 

https://www.rakutenintelligence.com/
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Data Preparation 

The data preparation process for model development looks similar to typical data preparation, 
but with some added layers. In a trip-based model, trip rates by trip purpose must be estimated, 
typically using recent household travel survey data collected in the region. This process does 
not change when trying to address e-commerce, since recent shopping trip rates still must be 
input to the model. 

However, because e-commerce affects shopping travel, in particular, it will be useful to isolate 
shopping travel from other trip purposes. For home-based travel, many models already treat 
shopping travel as a distinct trip purpose, as we will do here. For nonhome-based travel, we 
also will need to summarize travel with a shopping purpose from other trip purposes. For 
nonhome-based travel, we need to only know the share of nonhome-based trips (work versus 
other) that have at least one trip end at a shopping activity. 

Model Estimation 

Similarly, model estimation proceeds as is typically done using a recently collected household 
travel survey to estimate trip rates for different segments of households. There need not be any 
change in the standard approach to model estimation. 

However, in order to recognize the reality that e-commerce continues to change year by year 
and also has an impact on shopping travel, the model must be designed to be responsive to the 
levels of e-commerce. For this case study, we assume that e-commerce trade as a share of 
total retail is a metric that can be forecast in the future. 

In order to make use of the historical e-commerce data, we also will use the historical shopping 
trip rates estimated from NHTS sample shown above. It is possible to measure the drop in 
shopping trips and relate that drop to levels of e-commerce described from the U.S. Census. 
Figure 8 shows an example of this using an exponential curve.1 This curve suggests that when 
the e-commerce share of retail reaches 20 percent, shopping trips per person will reduce to only 
0.8 trips per day, which is a reduction of about 40 percent from 2017 shopping trip levels. 

 

1 Note that we included a point for the 1995 shopping trip rate from the NHTS of 2.0, even 
though U.S. Census data only goes back to 1998. We assumed e-commerce share of 
0.1 percent in 1995. 
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Figure 8. Chart. Example of exponential curve-fitting to e-commerce and shopping trip 
rate data. 

(Source: U.S. Census Bureau.) 

In this case study, we use this relationship to automatically adjust the shopping trip rate used by 
the trip generation model by the appropriate amount based upon the model’s forecast year. This 
is done using the following steps: 

1. Using the fitted curve, calculate the shopping trip rate in the model’s base year. Here we use 
2017 as the base year with a shopping trip rate of 1.3. 

2. If the forecast year is input as 2020, the calculated trip rate is 0.8. In this case, this 
corresponds to a reduction in shopping trips of 40 percent. 

3. The calculated reduction in shopping trips can be directly applied to the home-based 
shopping trip rate to generate the forecast year shopping trip rate: 

TR_adj = TR_orig * (1 – % reduction) 

4. For nonhome-based travel, we must make an adjustment to this reduction based on the 
percent of nonhome-based travel that has one activity end that is for the purpose of 
shopping. This can be done using the following formula: 

TR_adj = TR_orig * (1 – % shopping) + TR_orig * (% shopping) * (1 – % reduction) 

It is important to note that other factors may be impacting shopping travel behavior. Furthermore, 
the relationship in figure 8 was fit using only four data points. Different assumptions about the curve 
and fitting the curve would lead to vastly different conclusions. For instance, we may not expect 
shopping trips to completely disappear at high levels of e-commerce. Figure 9 shows an example 
of this with a curve that fits the data almost, as well as the one above. In this case, shopping trips 
approach 0.5 per person per day as e-commerce increases, rather than approaching zero trips. 
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Figure 9. Chart. Alternative example of exponential curve-fitting to e–commerce and 
shopping trip rate data. 

(Source: Federal Highway Administration.) 

Model Validation 

The traditional approach to model validation can still be used to validate the new model. All of 
the traditional measures for model fit and appropriateness apply, but there is one new model 
component that relates shopping trip rates to e-commerce levels, which is calibrated to the 
existing data, but can not validated except in regard to sensitivity testing to ensure model is 
working as expected. 

If a historical household travel survey dataset for the region is available, the change in shopping 
travel trip rates can be directly measured between the recent and historical survey data and 
compared against the fitted curve. This could give some confidence that the relationships are 
valid. 

Another tool that could be utilized, and in fact, is recommended by the Model Validation and 
Reasonableness Checking Manual (Cambridge Systematics, Inc., 2010), is a full backcast. A 
backcast is when a model is applied and forecast for a year that occurred in the past, using 
historical input data for things like transportation networks, population and employment, and 
land use. The backcast model results can then be compared against historical data like traffic 
counts, transit boardings, and other traditional metrics. 

Other model sensitivity tests also would be valuable. A number of questions may be valuable in 
devising sensitivity tests, such as the following: 

• How does the model respond to an increase in e-commerce activity? Are the drop-in trip 
rates that results from growing e-commerce activity reasonable? What impact does this 
have on other key metrics, like trip lengths and travel times? 
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• What are some of the limitations of the model sensitivities? For instance, how much 
confidence is there in the model’s implied response to very high e-commerce levels? 
Because we have not yet observed e-commerce levels above about 10 to 15 percent of total 
retail, any forecast beyond those levels represents an extrapolation of existing data. How 
confident are we in the model’s forecasts at e-commerce levels that are much higher? 
Developing an appreciation of our confidence in model results is as important as the results 
themselves. 

Forecasting 

Any forecast using the model must recognize the added input of e-commerce levels. This could 
be treated as a user-specified input value or a simple trend forecast could be made that 
provides an estimate of e-commerce levels for any specified forecast year. The latter could be 
informed based upon historical data. 

Building the model as described in this section lends itself nicely to the exploratory modeling 
and analysis process. Since uncertainty exists about the magnitude of e-commerce in the 
future, the e-commerce levels could be treated as an uncertainty in any exploratory modeling 
and analysis work. Uncertainty also exists about the impact that e-commerce has and will have 
on levels of shopping travel. There may be wide ranges for the distribution of the effect of 
e-commerce levels on shopping travel, which would appear as uncertainty in the fitted curves 
shown in figure 8 and figure 9. As such, additional levers could be built into the model that 
account for this uncertainty in how e-commerce levels impact the trip rates. This would require a 
more complex model development process, but could allow tests of these uncertainties as well. 

Modeling Freight and Parcel Delivery 

In this section we describe the steps that can be used to address the freight and parcel delivery 
impacts of e-commerce in a trip-based model. 

Data Preparation 

Traditionally, regional truck models do a poor job of estimating parcel delivery trips within a 
region. This is largely because the data to estimate these trips simply do not exist. The natural 
entities to acquire these data from are the shippers themselves (e.g., UPS, FedEx, and 
Amazon). However, shipping companies are not necessarily interested in sharing their data with 
the planning community due to it containing proprietary information of which these companies 
are highly protective. 

The emergence of new data sources, such as the parcel delivery data noted above, could allow 
for estimating parcel delivery activity. In particular, these data could be used to estimate 
differences in the amount of parcel delivery activity across different segments of the population. 
However, these data are incomplete representations needed for modeling since they only 
contain information about where deliveries are being made. They do not contain information 
about how trips get linked between these locations nor is there any clear way of expanding 
these data. 
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Other national-level data estimates and anecdotal information could be used as guides to make 
assumptions about how to size the volumes of parcel deliveries. Some key pieces of information 
include the following: 

• In the U.S. in 2019, Amazon shipped 2.5 billion packages, FedEx shipped 3 billion 
packages, and UPS shipped 4.7 billion packages (see 
https://www.forbes.com/sites/andriacheng/2019/12/12/how-serious-is-amazons-threat-to-
ups-fedex-study-finds-it-could-soon-beat-them-in-us-package-delivery-
volume/?sh=4d1ae53368f4). 

• Amazon drivers deliver between 80 to 250 parcels per day 
(see https://www.businessinsider.com/amazon-delivery-drivers-reveal-claims-of-disturbing-
work-conditions-2018-
8#:~:text=A%20couple%20of%20years%20ago,250%20parcels%20daily%2C%20drivers%2
0said). 

• UPS drivers deliver about 120 parcels per day 
(see https://www.wired.com/2013/06/ups-astronomical-
math/#:~:text=At%20UPS%2C%20the%20average%20driver,giant's%20director%20of%20
process%20management). 

These figures can provide some rough approximations of the overall levels of parcel delivery 
activity at a national level. Making some assumptions about how national trends scale to a 
region, it may be possible to reasonably determine the overall size of the parcel deliver activity 
at a regional level. 

Model Estimation 

While it may be tempting to think about how to model parcel delivery activity within the existing 
framework of a regional truck model, the travel patterns of parcel delivery vehicles are likely 
quite distinct from those of other trucks. As a result, it may be warranted to develop parcel 
delivery vehicle models that are separate from other truck travel. In the case study of a trip-
based model, we take the latter approach using the following steps: 

• Using Rakuten or similar data, estimate the distribution of parcel delivery activity to each 
TAZ. In this case, we will use a linear regression model. The independent variables of this 
model may include the following: 

− Employment by type at the TAZ level. 

− Households by market segment at the TAZ level. 

− Accessibility or area type variables at the TAZ level. 

These variables are already readily available since they are used as inputs to the standard 
trip-based model. 

https://www.forbes.com/sites/andriacheng/2019/12/12/how-serious-is-amazons-threat-to-ups-fedex-study-finds-it-could-soon-beat-them-in-us-package-delivery-volume/?sh=4d1ae53368f4
https://www.forbes.com/sites/andriacheng/2019/12/12/how-serious-is-amazons-threat-to-ups-fedex-study-finds-it-could-soon-beat-them-in-us-package-delivery-volume/?sh=4d1ae53368f4
https://www.forbes.com/sites/andriacheng/2019/12/12/how-serious-is-amazons-threat-to-ups-fedex-study-finds-it-could-soon-beat-them-in-us-package-delivery-volume/?sh=4d1ae53368f4
https://www.businessinsider.com/amazon-delivery-drivers-reveal-claims-of-disturbing-work-conditions-2018-8#:%7E:text=A%20couple%20of%20years%20ago,250%20parcels%20daily%2C%20drivers%20said
https://www.businessinsider.com/amazon-delivery-drivers-reveal-claims-of-disturbing-work-conditions-2018-8#:%7E:text=A%20couple%20of%20years%20ago,250%20parcels%20daily%2C%20drivers%20said
https://www.businessinsider.com/amazon-delivery-drivers-reveal-claims-of-disturbing-work-conditions-2018-8#:%7E:text=A%20couple%20of%20years%20ago,250%20parcels%20daily%2C%20drivers%20said
https://www.businessinsider.com/amazon-delivery-drivers-reveal-claims-of-disturbing-work-conditions-2018-8#:%7E:text=A%20couple%20of%20years%20ago,250%20parcels%20daily%2C%20drivers%20said
https://www.wired.com/2013/06/ups-astronomical-math/#:%7E:text=At%20UPS%2C%20the%20average%20driver,giant's%20director%20of%20process%20management
https://www.wired.com/2013/06/ups-astronomical-math/#:%7E:text=At%20UPS%2C%20the%20average%20driver,giant's%20director%20of%20process%20management
https://www.wired.com/2013/06/ups-astronomical-math/#:%7E:text=At%20UPS%2C%20the%20average%20driver,giant's%20director%20of%20process%20management
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• Using national statistics, estimate the number of parcels delivered in the region per 
weekday. This requires a number of assumptions. 

− First, we assume that the regionwide number of parcels is proportional to the population 
of the region. Nationally, UPS, FedEx, and Amazon delivered 10.2 billion packages in 
2019 (see above). In our case study, we assume the region has a population of 5 million 
people, which equates to 160 million parcels per year in the region. 

− Second, we convert the yearly figure to daily weekday parcels. Because fewer parcels 
are delivered on weekends than weekdays, we use an assumption of 6 weekday 
equivalents per week on which deliveries are made. This results in an estimate of about 
500,000 parcels delivered each weekday. 

− Last, we use the estimates of average parcels delivered per day to derive an average 
number of vehicles used to deliver the parcels. If we assume 150 parcels per driver per 
day (range above was 80 to 250), we get an estimate of about 3,400 drivers, each 
making 150 deliveries per day. 

• The next step in the process is to link trips. This step requires some big assumptions, since 
we have no data to support building the model. However, we can reasonably guess that one 
objective of each driver is to minimize the time spent traveling, and we can reasonably 
guess that shippers want to maximize the number of deliveries a driver can make by 
ensuring deliveries are close to one another. While it is unlikely that shippers could cluster 
all deliveries for any given driver in a single TAZ, it is likely that each driver may only visit a 
small number of TAZs that are close in proximity (in addition to the trip to/from a 
warehouse). By assigning each parcel delivery to a driver and minimizing the travel for each 
driver, the trips can be chained, and a trip table developed. 

• The last step is to relate parcel delivery activity to e-commerce activity. Since no data exists 
here either, one simple assumption is to consider a one-to-one relationship between 
e-commerce and number of parcels that need to be delivered. The e-commerce activity is 
already being used as an input to adjust shopping trip rates. For any forecast year, the level 
of e-commerce activity is compared against the base year, and the number of total 
regionwide parcels is factored by the ratio of the e-commerce level in the forecast year and 
the level in the base year. 

Model Validation 

Unfortunately, model validation data does not really exist to test the validity of the parcel 
delivery model developed for the case study. However, it would still be possible to conduct a 
collection of sensitivity tests and check reasonableness of model forecasts. Sensitivity tests that 
could be conducted include the following: 

• Test the reasonability of parcel deliveries per day per driver. This could be done by 
computing the total travel time based upon the set of trips generated for a driver and 
comparing against what is feasible within the time constraints of a day. 

• Test the impacts of raising or lowering the e-commerce levels for a given forecast year. 
Given the concurrent reduction in shopping trip rates, this sensitivity test would shed light on 
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how the model is forecasting e-commerce to impact levels of congestion and other travel 
metrics in the region. 

Forecasting 

A great deal of uncertainty exists with e-commerce, both because there are gaps in the 
transportation data available to study it, and because it is a rapidly changing technology. As a 
result, the methods described here lend themselves well to exploratory modeling, especially on 
the parcel delivery side where the existing data is particularly thin. Large uncertainties are 
associated with the modeling components developed to forecast parcel delivery, as discussed. 

Work from Home 

While working from home has been around for decades and has long been studied as a 
transportation demand management concept to reduce congestion levels on roadways, 
advances in communication technology and data systems have allowed more workers freedom 
to work from home in recent years. Based on data from the BLS, about seven percent of 
workers in the U.S. had the access to work from home as a benefit in 2019, which was up from 
about five percent in 2010 (DeSilver, 2020). These trends were exacerbated during the 
COVID-19 pandemic of 2020, where many workers were forced from their normal places of 
work to work-from-home arrangements. While it is unclear whether the trends that emerged 
during the pandemic will persist long term, the recent acceleration of work-from-home activity 
has encouraged agencies to have a renewed focus on examining work-from-home behaviors 
and policies supporting these behaviors. 

Key Questions 

There is a number of key questions related to work-from-home behavior from a policy 
perspective, including the following: 

• What are the characteristics of the telecommuters? 

Many professions cannot work from home due to the characteristics of their jobs. Examples 
of such professions include many retail and food service jobs, industrial and warehousing 
jobs, and medical professions. Many of these jobs have lower wage levels and, thus, there 
is a correlation between household income and ability to work from home, with lower income 
workers working from home less. 

Types of jobs that can more easily cater to working from home include jobs in many office 
settings, such as financial sector, professional services, and public administration. 

Regular and infrequent telecommuters also may live in different kinds of locations than other 
workers and have differing transportation needs. For instance, they may be less likely to rely 
on transit for commuting needs and more likely to own automobiles. 

• Are the features of regular telecommuters different from infrequent or flex workers? 

There is a growing segment of workers whose usual workplace is a nonhome location, but 
who routinely telecommute one or more days per week. The characteristics of these workers 
may be quite different from workers whose workplace location is their home. 
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Among regular telecommuters, there also may be key differences. For instance, some 
workers with home as their regular workplace may have professions that require regular out-
of-home work travel, such as real estate agents or certain types of businesses like 
contracting. The characteristics of these workers likely differ from the characteristics of 
telecommuters who primarily work from their home. 

• What days of week will flex workers actually come into work and what days will they work 
from home? 

A company that staggers its office workforce across different days has lower office space 
demands, which could potentially save money. However, some professions may require 
workers to collaborate and be at the worksite on the same days. Understanding the differing 
needs of different types of jobs where work-from-home behavior is prevalent is important for 
understanding the behaviors of these workers. 

• Will workers continue working from home after the COVID-19 pandemic ends? 

As noted above, many employers were forced to have their workers start working from home 
during the pandemic. For many companies, this meant making new investments in 
equipment and other services to support a remote workforce. Part of the reluctance by some 
companies to allow working from home in the past may have been around the overhead of 
making their systems work for a remote workforce. Now that those investments have been 
made, there may be less reluctance to allow continued work-from-home arrangements, 
particularly given the potential of cost savings for things like office space. 

Moving past the pandemic, it will be important to monitor whether some of the shift to work-
from-home persists or if work-from-home patterns return to a prepandemic state. While there 
will likely be a downturn in working from home following the pandemic, levels of working 
from home are unlikely to return to prepandemic levels. 

Uncertainty Associated with Working from Home Behaviors 

Working from home has a number of impacts on travel behaviors. Obviously, working from 
home eliminates commute trips, but work-from-home patterns also have other distinct features 
that set them apart from other individuals. For instance, telecommuters are likely to block off 
time to adhere to work schedules, but also are more likely to be available for running household 
errands and providing rides to other household members than they would be if they had to 
report to a fixed workplace on a given day. This translates to some key travel pattern differences 
between telecommuters and other workers: 

• Types and purposes of travel. Telecommuters may have no work travel, but may engage 
in other out of home activities that onsite workers do not, like shopping or escorting 
activities. Other telecommuters may have regular work-related travel. 

• Time of day. Telecommuters have more flexibility during the travel day than onsite workers 
with fixed schedules. 

• Childcare needs. While many telecommuters likely utilize childcare services for young 
children that may be in the household, others may forego childcare services to take 
advantage of cost savings. 
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• Vehicle ownership. In many locations, telecommuters may have different needs in terms of 
vehicle ownership due to differences in modal options available for their daily travel needs. 

Data Availability 

A fair amount of data is available for understanding and modeling telecommuting trends, 
although most of the data is from before the COVID-19 pandemic. Levels of telecommuting are 
highest among higher income earners. Based on the American Time Use Survey (ATUS) 
(Bureau of Labor Statistics, 2019), conducted by the BLS, a number of characteristics helps 
explain who works from home, including the following:2 

• Women worked at home more (26 percent) than men (22 percent). 

• Those with an advanced degree worked at home most (42 percent), followed by those with 
a bachelor degree (34 percent), those with some college (19 percent), high school 
graduates (16 percent), and those with less than high school (10 percent). 

• Those with the highest incomes (above $1,620 per week) worked at home most 
(34 percent), followed by those making $1,001 to $1,620 per week (21 percent), those 
making $651 to $1,000 per week (12 percent), and those making $650 or less per week 
(10 percent). 

• Occupations with the highest levels of working from home include management, business, 
and financial operations (37 percent); professional and related services (33 percent); and 
sales (24 percent). 

Rates of telecommuting increased substantially during the COVID-19 pandemic of 2020. Nearly 
one-half of all workers were working from home during the pandemic, with the highest rates of 
work from home by those from the highest income group (Guyot and Sawhill, 2020). 

Most recent household travel surveys already ask questions about a worker’s regular workplace 
and ability to work from home on a part-time basis. These questions are critical to allow that 
estimates of a baseline work-from-home population can be calculated. 

On the other hand, household travel surveys typically do not ask about the purpose of in-home 
activities. This is partly because it is often difficult for respondents to say specifically that they 
were working when they also may have been engaging in other nonwork activities during 
at-home periods. As a result, it is typically not possible to determine whether a worker worked 
from home on their travel day or did not work at all. Given the growing interest in work-from-
home patterns, in the future, household travel surveys should be designed to capture at-home 
work activities explicitly, even if the duration of at-home work activities cannot be established 
accurately. 

Mobile location data offers a new data source for transportation analyses. While these data are 
good for precisely identifying activity locations of a person over long periods of time, they do not 
provide contextual information. Home locations can typically be identified easily based upon 

 

2 Note that figures represent the percentage of workers that worked for any amount of time at 
home on a given day that the worker worked. 
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diurnal patterns of a given person and out-of-home work locations also can often be identified. 
However, a worker that telecommutes presents challenges to these data. For example, during 
the COVID-19 pandemic, when many more workers began working from home on a regular 
basis, it can be difficult to differentiate those working from home from the many workers that lost 
their jobs during this time. However, these data do hold promise in understanding the travel 
patterns of individuals that work part-time from home and part-time onsite. Moreover, these data 
could be used alongside survey data to help establish longer-term patterns among different 
groups of travelers. 

Modeling Working from Home 

In this section, we describe the steps that can be used to incorporate telecommuting in a trip-
based model. 

Data Preparation 

In order to model work-from-home behaviors in a trip-based model, at a minimum, workers need 
to be split into three distinct categories: 

1. Workers that work onsite on the travel day. 

2. Workers that work from home on the travel day. 

3. Workers that do not work on the travel day. 

This may not be so straightforward since household travel surveys may not ask the reason a 
worker did not travel to work on the travel day. In that case, assumptions may be needed to 
infer which workers that did not work fall into the work from home category, and which fall into 
the did not work category. 

In addition to these requirements on the household survey data, having detailed employment 
classification data also can be valuable. This is because certain sectors of employment are 
more likely going to be jobs where employees can work from home versus other sectors of 
employment. Therefore, the more detailed the employment classification that is possible, the 
better it will be for model development. 

Model Estimation 

In a trip-based model, the main modeling elements that could be adjusted are trip productions 
and attractions, where work from home behavior would reduce home-based work trip rates (and 
potentially increase home-based other trip rates). While the effects of work-from-home patterns 
could be estimated from survey data (if the survey samples are sufficiently robust) and tied back 
to the level of telecommuting activity, one key challenge is that the ability to work from home is 
not uniform across a region, and certain jobs are more likely to allow workers to telework. To 
account for these effects, one option for modeling work-from-home behavior in a trip-based 
model is as follows: 

• In addition to any other household segmentation, households are segmented by whether 
any worker from the household works from home on the travel day. 
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• Trip generation rates are then estimated separately for these two categories of households. 
Note that telecommuting household segmentation across other variables may need to be 
collapsed to ensure reasonable sample sizes. While home-based work trip productions will 
be low for telecommuting households, home-based other trip productions may very well be 
higher. 

• The production of nonhome-based trips for telecommuting households may deserve special 
attention since the geographic distribution of these trips may be different for telecommuting 
and nontelecommuting households based upon the locations of telework-eligible jobs in the 
region. Having a robust employment type classification scheme could be helpful in 
differentiating between households for nonhome-based trip productions. 

• The new input to the model would be the level of telecommuting activity. 

The segmentation of households by telecommuting categorization also may be carried through 
to the trip distribution and mode choice model components. Telecommuting households may 
have different distributional patterns for trips even after accounting for the differences in trip 
purposes resulting after trip generation. However, the trip generation elements of the model are 
likely where the biggest effects are likely. 

Model Validation 

This model can be validated in similar ways to the traditional approach. For the model base 
year, the telecommuting share of households that is input to the model need only be based 
upon the telecommuting levels observed in the base year. The survey can be further used to 
validate the types of locations that telecommuting and nontelecommuting households travel to. 

If a historical household travel survey dataset for the region is available and the survey collected 
information about telecommuting that can be used to compute telecommuting rates, a full 
backcast of the model may be appropriate, using historical input data for transportation 
networks, employment, and population. 

Sensitivity testing also is critical and can help add confidence to the telecommuting components 
of the model. The types of questions that can be useful to ask as part of sensitivity testing 
include the following: 

• Are the differences in trip generation (and other model components) between telecommuting 
households and nontelecommuting households reasonable? 

• What times of day do telecommuting households travel in? How far do they travel and for 
how long? How does this compare against nontelecommuting households? 

• What are some of the limitations of the model sensitivities? How confident are we in the 
forecasts when telecommuting is very high? It is likely that, at some point, the forecasts 
break down. For instance, the timing of travel for telecommuters likely is somewhat related 
to congestion on the network. If telecommuting becomes quite high, this may reduce peak 
congestion so much that the time-of-day shifts forecast by the model are unreasonable. 
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Forecasting 

Since the beginning of the COVID-19 pandemic in 2020, there has been a renewed interest in 
telecommuting behavior, largely because the pandemic forced millions of workers to being 
working from home on a regular or semi-regular basis. With such great uncertainty about the 
extent to which people will continue working from home following the pandemic, exploratory 
modeling provides an approach for systematically investigating how telecommuting levels may 
impact the transportation system. 

In addition to the future levels of telecommuting behavior being highly uncertain, the mechanics 
of how telecommuters travel are not well understood either, even with the existence of survey 
data that reflects telecommuting patterns. Some of these features could be examined using 
exploratory modeling as well, for instance, adjusting the trip rates of telecommuting households 
up or down. 

2.4 Getting the Right Data (and Using It Correctly) 

As noted above, some of the biggest challenges associated with developing models to analyze 
both conventional travel and emerging mobility options have to do with getting the right data. It 
is difficult to get data on new types of travel, for which there may be only a few years of usage to 
examine (or nothing, in the case of modes such as CAVs, which are not yet being used). And 
much of the data on new travel mode usage is not publicly available. At the same time, 
however, there are newer data sources that had not been available until recently, and both the 
amount and accuracy of the data are beyond what planners have had access to in the past. 

Model Input Data 

The main inputs of travel demand models are socioeconomic and land use data and 
transportation networks. The best sources for model input data are well established and may be 
legislatively mandated in some jurisdictions (for example, the need to use U.S. Census data or 
State-generated employment data). The main concern for analysts is understanding and 
accounting for the errors associated with these data sources, especially forecasts, as described 
in section 2.5. 

Survey Data 

There is a wealth of information available on the collection and validation of travel survey data; 
perhaps, the most comprehensive source is the Travel Survey Manual, first published by FHWA 
in the mid-1990s, and later updated by the TRB Standing Committee on Travel Survey Methods 
(2010). Travel surveys are a unique source of some of the information that is valuable for 
developing and validating models, although household travel surveys can cost millions of dollars 
and can take years to plan for, collect data, and process the data. For many analyses, 
household surveys are by themselves insufficient to provide the necessary data; for example, if 
transit demand is part of the analysis, transit rider surveys are a critical resource in identifying 
how transit is used and who is using it. Additionally, as discussed in section 2.5, there are a 
number of sources of error in survey data that must be considered when using such data. 
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Data on the Amount of Travel on Transportation Facilities 

The data available on the amount of travel on transportation facilities are used in model 
validation to help confirm that the model produces accurate estimates of travel for the base year 
scenario, where observed data are available. These data consist mainly of vehicle traffic count 
data (often segmented by vehicle type and time of day) and, in situations where transit is being 
considered, ridership counts at the route level and station boarding counts. The data available in 
a particular region is highly dependent on the data collection programs undertaken by the States 
and other agencies involved. As with other data sources, it is important to consider and account 
for the errors associated with these data sources, as discussed in section 2.5. 

Big Data 

“Big data” for measuring travel demand have revolutionized how we think about travel 
forecasting, because these data can be collected more regularly and with larger sample sizes 
than is possible within the construct of traditional survey data collection (which is the typical 
means for collecting data on travel demand). Significantly, most big data sources are collected 
passively, meaning that they do not rely on responses from the travelers and, therefore, do not 
have associated response bias. There is a number of ways to effectively use big data to support 
travel modeling in terms of model development and validation. There also are several sources 
of big data that can be used in different ways, including the following: 

• Mobile Location Data. Location-based services (LBS) data fall into this category because 
these data are collected from mobile devices that individuals carry with them. These data 
are typically marketed for use in generating origin-destination (O-D) trip tables, but can be 
useful for any application that requires identification of trip ends. These data are typically not 
robust enough to decipher the trajectory of movement from origin to destination, at least not 
on a widespread basis. 

• Connected Car and GPS Tracking Data. These data typically come from transponders 
inside personal automobiles and can be used to track the trajectories of trips from origin to 
destination. These data are often used to develop speed estimates on major roadways and 
infer typical routes used between O-D pairs. 

• Truck GPS Data. These data also come from transponders inside vehicles, but in this case, 
those vehicles are trucks. These data can be provided as O-D trip table form or can be 
provided as disaggregate vehicle traces. 

These data types are described in more detail below. 
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Mobile Location Data 

The most common type of mobile location data currently available comes from LBS. These data 
are collected by applications running on mobile devices using the embedded GPS technology. 
Some of the properties of these data include the following: 

• Sample Size: 

− The raw data are massive in size relative to more traditional sources of travel behavior 
data, such as surveys, with penetration rates in the tens of millions (if not hundreds of 
millions) of devices nationwide. 

− Once these datasets are processed and filtered, device sample sizes are typically 
smaller since some percentage of the data collected by LBS are not usable for inferring 
travel. While algorithms to process the data vary from vendor to vendor, processed LBS 
data typically include a set of devices representing at least 5 to 10 percent of the 
population, which is about an order of magnitude larger than most surveys (where 
household travel surveys typically recruit a sample of less than 1 percent). LBS datasets 
often include many days of information for each device, making samples even larger 
relative to household travel surveys, which typically only collect a few days of travel 
information from respondents. 

• Passive Data Collection: 

− Unlike surveys, LBS data are collected passively from mobile devices. As a result, travel 
episodes are not directly observed and must be inferred from the geographic and 
temporal data that are directly collected. 

− Contextual data about travel are not directly observed (e.g., mode, purpose, travel party, 
demographics). Some of this information can be inferred or estimated based upon 
repeated observations of the same device, or based on fusion with other data sources. 

− Ban et al. (2018) note that these datasets are not generated via rigorously designed 
processes (as surveys are); and as a result, the representativeness of the generated 
sample cannot be guaranteed. 

• Persistence of Device Identifiers: 

− Device identifiers are persistent for weeks or months, which allows for reasonably 
accurate and precise inference regarding home and work locations. 

• Data Quality: 

− LBS data are collected at irregular intervals that depend on the usage patterns of the 
device user. As such, the quality of the data collected varies from one device to another. 

− Low-quality data are filtered using methods that vary from vendor to vendor. 

As noted above, specific methods are needed to infer travel episodes from these data since 
travel is not observed directly. Data processing algorithms are needed to identify trip ends and 
filter erroneous or incomplete records (A number of such algorithms have been published in the 
literature (e.g., Alexander et al., 2015; Widhalm et al., 2015; Wang and Chen, 2018; Cambridge 
Systematics, Inc. and Massachusetts Institute of Tehcnology, 2018; and Lemp et al., 2019.). 
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LBS data are typically used to generate O-D trip tables. Since data are collected from mobile 
devices, they are generally considered to represent an estimate of total trips in a region, 
including trips by all modes and by residents and visitors. Some of the key uses of these data 
are as follows: 

• O-D Trip Patterns. While traditional data sources, like travel surveys, can provide 
reasonably accurate estimates of average trip lengths and trip length distributions, these 
data sources have sample sizes that are too small to provide robust information about O-D 
trip patterns in most cases. Because of the much larger sample sizes obtained from LBS 
data, they provide much better spatial and temporal coverage than survey data (Adler et al., 
2017). The enhanced resolution likely means that the O-D trip pattern estimates derived 
from the data are more robust than those developed from surveys, and these O-D estimates 
can be used for model calibration or other purposes. 

• Visitor Travel. Traditionally, visitor travel is either ignored in regional travel models or 
modeled in very limited ways, possibly based on inadequate survey data. Visitors to a region 
can be easily identified in LBS datasets based upon having a home location outside the 
region. As a result, LBS data can be used to estimate the relative levels of trips generated 
by zone, as well as the distribution patterns of visitor trips. 

• Seasonality and Day of Week. LBS datasets can provide estimates of travel patterns for 
different days of week and seasons of the year, which are useful information for certain 
applications. Measuring differences in travel patterns for different seasons or across days of 
week can provide a benchmark from which to estimate differences in key metrics like VMT 
and VHT. These data also can be used to support specialized models in areas with heavy 
seasonal tourism and weekend visitors. Such information is not available from surveys with 
specific (usually short) timeframes for collection of data from specific travelers. 

• Travel Variability. LBS datasets can be used to understand how people’s travel patterns 
vary from day to day. Since individual devices can be tracked over weeks and even months, 
a clearer picture of travel pattern variability at a disaggregate level can be gleaned. Note 
that sometimes only aggregate trip-level information is available. 

• Model Update Frequency. In comparison to traditional survey data, LBS data have a lower 
cost, are collected continuously, and are readily available for consumption. Household travel 
surveys can cost millions of dollars and can take years to plan for, collect data, and process 
the data. The long lead time often means that the data are several years old before they are 
ever used to update the regional model. LBS data, on the other hand, can be acquired at a 
fraction of the cost and with a very short lead time of a few months or less. This allows for 
more frequent updating of the data used to support modeling and using more recent data. 
While LBS data may not offer the full gamut of contextual information offered by surveys, 
other key metrics of travel can be updated, including the following: 

− Trip rates by geography. 

− Temporal distributions. 

− Trip lengths. 

− Mix and share of trip purpose. 
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It also is worth noting that these data need not be used in isolation. Techniques that use 
these data in tandem with other more traditional datasets, like Census data products, traffic 
counts, and household travel surveys, could provide even more value. 

While these data hold promise for a variety of transportation planning and modeling 
applications, they are not without limitations. Users of these data need to understand these 
limitations to ensure these data are not used in ways that are not appropriate. Some key 
challenges of these data are as follows: 

• Data Expansion. As noted by Ban et al. (2018), LBS data may not be representative of the 
population. Moreover, these data still represent a sample of overall population. Therefore, 
data expansion is a critical component of using LBS data for any purpose. Expansion 
processes adjust the LBS sample of device home locations (and potentially work locations) 
to match the true population. This is important because biases may exist from zone to zone 
and across area types. Data expansion is typically accomplished using Census 
demographic information. 

• Demographics. Even when the data are expanded, there are potential issues related to the 
representativeness of the sample. Certain demographic biases may exist with the data, 
which cannot be controlled for in the expansion process since demographic information is 
not available. Key groups that may be underrepresented include the following: 

− Children less than 10 years of age who typically do not carry mobile phones. 

− Older individuals who, on average, likely have lower mobile phone usage and lower 
rates of app usage. 

− Lower income individuals, who may not have access to mobile phones. 

− Individuals concerned about personal data privacy, who may use their mobile phones in 
different ways. 

• Other (potential) biases. Vendors of raw LBS data typically will not share information about 
the apps from which data are collected. While most of these data vendors can ensure that 
data are coming from many tens or hundreds of different apps, the uncertainty associated 
with the collection of apps offers potential for bias which cannot be checked (Adler et al., 
2017). In addition, it is unclear whether general app usage has any correlation with travel 
patterns. For instance, potential biases could emerge if some people that are particularly 
concerned with privacy (who might do things to mask the ability of apps to track their data) 
travel differently than others. 

• Validation. Direct validation of these data requires an apples-to-apples comparison of trips 
inferred from raw LBS data against actual trips performed by individuals in a region. Adler 
et al. (2017) used GPS-collected survey data and matched respondents to devices in an 
LBS dataset. They found that LBS data underrepresents certain trips, especially shorter 
duration ones, though they also note that improvements to the trip inference algorithm may 
be able to mitigate these issues in the future. 

Besides direct comparisons, some attributes of these data can be easily compared against 
other more traditional data sources (such as surveys) to validate the data (Adler et al. 2017; 
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Cambridge Systematics, Inc. and Massachusetts Institute of Technology, 2018; Ban et al., 
2018). It is worth noting that errors in the inferred data may be masked when comparing to more 
aggregate statistics (Ban et al., 2018). 

On the other hand, many of the ways in which these data provide value is by providing cheaper 
and more robust estimates for key travel pattern characteristics for which we often have very 
limited information. For instance, often the only other source of O-D trip pattern data is a 
household travel survey, which, as described previously, suffers from small sample sizes, 
making O-D trip tables at levels important for modeling (i.e., transportation analysis zones) very 
sparse. Visitor travel also typically has limited data available from which to validate because 
data on visitors often is not collected. It is important to appreciate that these data cannot be 
validated along every dimension. 

• Contextual information. Contextual information such as demographics and key travel 
characteristics are not available from the data. Travel surveys will remain an important 
source of data for connecting context to travel patterns. 

• Differences among data vendors. Each data vendor uses its own unique set of algorithms 
(which are generally not made available to data users) to process and compile trip pattern 
information. Since each one is unique, differences can emerge that may mean certain 
limitations exist for one dataset that do not for another. Furthermore, given these data are 
still quite new, algorithms continue to change to improve inference processes and add new 
features. In this continually evolving environment, it becomes quite challenging to make any 
definite judgments about these data more generally. The best advice is to evaluate the 
dataset along the dimensions that are important for its use case to ensure the data provide 
value. 

Connected Car and Global Positioning System Tracking Data 

GPS tracking data are fundamentally different from LBS data because they are collected at 
frequent and regular intervals (e.g., every few seconds), which makes these data appropriate for 
tracking the route used for a trip. However, these data are generally collected by devices 
located in autos and trucks, and so these data cannot measure travel by other modes, such as 
transit or bicycle. Some features of these data are as follows: 

• Each device identification (ID) in the dataset represents a vehicle, rather than a person (as 
in the case of LBS data). Device IDs tend to be updated much more frequently than is the 
case for LBS data, meaning a vehicle cannot be tracked over days or weeks. In fact, in 
some GPS datasets, the vehicle IDs are updated after each trip. 

• The GPS precision of these data is more precise than LBS data, allowing for individual data 
points to be snapped to roads and even lanes on the road. 

• Data collection is much more frequent and occurs at regular intervals. Often data are 
collected at intervals of 60 seconds or less. This allows for tracking the path used by a 
vehicle in addition to the trip origin and destination. 

• The sample of devices included in any given dataset often comes from a small sample of 
vehicles. These vehicles either have onboard navigation systems or manufacturer-installed 
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connected car systems. These vehicles tend to be newer and biased toward more luxury 
vehicles, which results in a sample that is not representative of the set of vehicles actually 
on the roads. As a result, expansion is really not possible with these data, and it is important 
to understand the sample effects for any application using these data. 

Chen et al. (2017) provide more detailed information about the key properties of these types of 
datasets, including spatial and temporal properties of raw GPS data, as well as key properties of 
trips inferred from these data. 

These data are often used to support specific applications rather than calibrating or updating a 
full regional model. For instance, these data can be valuable for providing O-D information for 
specific links on the network (i.e., select link analysis). They also are used for various types of 
corridor and subarea analyses. 

The main way in which these data can be used to support model development is through travel 
time and speed information from the data that can be aggregated at the link level. Speed and 
travel times at the link level that are output from the model can then be compared against 
observed speeds and travel times by time of day. These data also may be used to calibrate 
volume-delay relationships and identify free flow speeds for individual facilities. 

Truck Global Positioning System Data 

Truck GPS data are similar to GPS tracking data, except that they are specific to commercial 
vehicles. These data have GPS spatial precision and are collected in frequent and regular 
intervals, which allows for both identification of trip ends and routing. Unlike LBS and connected 
car data, however, truck GPS data are often available at a disaggregate level, allowing the user 
to have access to individual ping location data. 

It is important to note that different sources of truck GPS data provide travel patterns for 
different types of trucks. For instance, American Transportation Research Institute (ATRI) data 
predominantly come from heavy trucks (FHWA classes 8 to 13 or combination units), while 
INRIX data offerings include medium trucks (FHWA classes 5 to 7) and light trucks. 

These data can be used to identify truck trip ends and build O-D truck trip tables. However, 
expansion is often a challenge as there are typically not good bases for the expansion process. 
Expansion is often performed by a factor method or Origin-Destination Matrix Estimation 
(ODME) process; both of which aim to align the O-D patterns more closely with truck counts. 

These data also are often used for model development. By utilizing land use and employment 
data along with travel impedances, trip generation and distribution models of truck trips can be 
related to key variables. Expansion is again important, particularly for calibration of trip 
generation rates. 

2.5 Validating and Testing the Models 

Model validation has been recognized as a topic of great importance for several decades. 
FHWA first published the Model Validation and Reasonableness Checking Manual in 1997 and 
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published an update in 2010 (Cambridge Systematics, Inc., 2010). There have been a multitude 
of research efforts on model validation focusing on specific modeling topics over the years. 

An important focus of model validation is to ensure that the model produces useful results for 
the planning analyses that it is used for. Certainly, this includes checks of how well the model 
can represent existing conditions by comparing base year scenario results to observed data 
(though there has recently been greater recognition of the error associated with the observed 
data). The importance of checking not only the final model results, but interim results of 
individual components to ensure that there are not offsetting errors in different components, has 
long been understood, as discussed in both versions of the FHWA model validation manual. 

The importance of model sensitivity testing also has been recognized since at least the 1990s. 
While models have long been used to estimate the impacts of new ways of traveling in a region 
(e.g., new types of transit, toll roads in regions where tolls had not previously existed), the 
recent emergence of new types of travel technology and behavior have greatly increased the 
importance of ensuring that models are properly sensitive to changing conditions. This 
increased focus on model sensitivity needs to consider the greater uncertainty in modeling 
things that we have little information about. 

Model sensitivity testing originally consisted of changing values of individual input data items or 
model parameters, and examining how much model results changed. For example, the 
sensitivity of mode choice to transit fare could be tested by increasing fares for some or all of 
the transit system by a fixed amount or percentage and seeing how transit demand changed. 
Later, analysts designed more sophisticated sensitivity tests, especially for more complex model 
types, such as activity-based models. For example, asserting a traveler age distribution that 
skews older than the existing population could be used to assess how well the model is able to 
capture the effects of an aging population on a variety of travel demand results, including 
activity purposes, time of day, and mode choices. Section 3.3 discusss how TMIP-EMAT can be 
utilized to perform a systematic and comprehensive sensitivity analysis. 

The emergence of new travel modes and travel behaviors 
requires that the use of more sophisticated model 
sensitivity testing procedures be increased to properly 
assess the effects of these issues. The greater uncertainty 
associated with these issues means that analysts need a 
greater understanding of the sensitivity to the assumptions 
made to model mobility options on which there is little or no 
information. The greater level of sensitivity testing should extend beyond changes in model 
inputs, such as travel times, to include model parameters themselves. For example, testing the 
sensitivity of the greater freedom to perform different activities in a CAV requires testing the 
sensitivity of the model to the in-vehicle travel time parameters. 

2.6 Recognizing Uncertainty in Travel Models 

As can be seen from previous section, there is a lot of uncertainty associated with emerging 
mobility options. This section discusses how to recognize uncertainty in travel models, and how 
modelers can incorporate the uncertainties into the planning process. 

Analysts need a greater 
understanding of the 
sensitivity to the assumptions 
made to model mobility 
options on which there is little 
or no information. 
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Uncertainty associated with travel models can be categorized into four types of uncertainty, as 
illustrated in figure 10: 

1. Measurement uncertainty associated with model inputs. 

2. Measurement uncertainty associated with model assumptions. 

3. Forecast uncertainty associated with model inputs. 

4. Forecast uncertainty associated with model assumptions. 

 

Figure 10. Diagram. Dimensions of uncertainties in models. 

(Source: Federal Highway Administration.) 

Measurement Uncertainty Associated with Model Inputs 

Measurements associated with model inputs include information about base year inputs to the 
model that can be directly measured from what existed at the time of the model base year, 
including parameters of the model estimated from observed data. While the ability to measure 
these inputs typically means there is a lower level of uncertainty associated with measurements 
than forecasts, measurement error still exists. Uncertainty can be in the form of error in direct 
measurements, but also can take the form of aggregation error, where a group is assumed to be 
homogenous when it is not. Sources of uncertainty that fall into this category include the 
following: 

• Base year population and employment. Measurements of population and employment 
can suffer from error for a number of reasons. Population data often comes from the 
Census, which is considered the gold standard, but the American Community Survey (ACS) 
samples only a small percentage of the population, which can lead to deviations actual 
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versus measured population totals. Employment estimates often come from economic 
databases that also are based on survey data. 

• Network characteristics. While agencies often try to maintain detailed and accurate 
representations of the highway and transit infrastructure, this is not always possible. 
Characteristics of the network typically are defined on the basis of models of traffic flow, 
which are themselves abstractions of reality; network links assigned common classifications 
are assigned common attributes; and low-level highway links (e.g., local roads) typically are 
absent from the network and replaced with centroid connectors meant to provide 
representative travel characteristics of trips accessing the network that is coded. Also, 
networks do not consider every characteristic of the systems facilities they represent; for 
example, highway network links typically include the “number of lanes,” but usually do not 
explicitly include the presence and length of turning lanes. 

• Aggregations of key variables. A number of inputs to travel models could be represented 
as having more disaggregate characteristics than what is actually represented. Model inputs 
such as employment are one example, where travel models typically do not distinguish 
between different types of employees (e.g., full-time, part-time, etc.). The zone system 
typically used by the model is another example where the exact origins and destinations of 
modeled trips are lost, and instead represented by an average centroid location for each 
zone. 

• Traffic counts. While traffic counting technology may not suffer from much uncertainty, 
many average day counts are based on single or two-day counts that are factored to 
represent an average day at that location. These factors will vary from location to location by 
different and unmeasured amounts, resulting in noise in the underlying data. Furthermore, 
any particular day may have unusual traffic as a result of factors that are uncontrolled. While 
counts are not a direct input to the model, they are used to calibrate and validate the model 
in the base year. 

Measurement Uncertainty Associated with Model Assumptions 

Measurement uncertainty associated with model assumptions deals with the structure and 
parameters of the model itself. Measurements of the model typically come from estimating or 
calibrating model components using observed data, such as travel surveys or counts. In such 
cases, uncertainty exists about the true value of parameters in relation to statistical estimates. In 
addition, assumptions are made about model structure and parameters, and these assumptions 
also serve as sources of uncertainty in the model. 

As discussed in section 2.2, there are several types of travel models that typically are used for 
different purposes, including sketch models, trip-based models, and activity-based models. 
These models use different assumptions about the mechanics of travel behavior. For instance, 
activity-based models typically are designed as collections of choice models that estimate travel 
behavior for individual travelers, and are built on assumptions of random utility theory. 
Therefore, there is measurement uncertainty surrounding the embedded assumptions defined in 
the type of travel model utilized. 
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Forecast Uncertainty Associated with Model Inputs 

This category includes the forecasts of inputs to the model when it is being used to analyze 
future scenarios. Most of the uncertainties typically considered when developing travel forecasts 
fall into this category. In some cases, these can be considered policy variables (e.g., when 
different networks assumptions are tested). Forecast uncertainties typically considered include, 
but are not limited to, the following: 

• Location and intensity of population and employment. Population and employment are 
key inputs to travel models, as noted above. Forecasts of population and employment can 
be developed on the basis of land use models, or on the basis of community plans or 
visions. Either way, a great deal of uncertainty is associated with future land use, which can 
have impacts on travel patterns. 

• Future networks. Roadway and transit networks also are key inputs to travel models. Since 
future infrastructure can be more carefully planned and set forth based upon policy, these 
inputs are often viewed more as policy inputs, rather than sources of uncertainty. However, 
uncertainty also may exist depending on the specifications of the analysis. For instance, toll 
roads operated by private companies may have the ability to set future tolls in different 
ways; and from a public agency perspective, this could be considered a source of 
uncertainty. 

• Costs. Forecast year auto operating cost, parking costs, and transit fares may vary from 
base year input values. 

Forecast Uncertainty Associated with Model Assumptions 

As discussed in section 2.2, different types of travel models are more or less suited to answer 
particular planning questions, and even within each type of travel model different assumptions 
within the model structure and model parameters affect the uncertainty of the forecasts. For 
instance, the components that are considered in a mode choice model may include a collection 
of different attributes (such as time and cost), but may ignore other attributes that are actually 
important to the choice context (e.g., reliability, safety, etc.). These also are structural decisions 
about what attributes are important and what role they play in travelers’ decisions. Travel 
behavior uncertainties deal with the assumptions about how travel behavior will change (or 
remain the same) in the future. Simple examples of these uncertainties, as propogated in travel 
models, include assumptions regarding price elasticities, values of time, and trip rates. 

It is important to keep in mind the inherent uncertainty in travel models when using them to 
support transportation analysis. The discussions on travel models and travel modeling-related 
data are not intended to provide indepth knowledge, but to highlight some of the important 
considerations to encourage good modeling practices. More information on travel model 
development, some of the recent research on emerging data and its limitations can be found on 
at https://www.fhwa.dot.gov/planning/tmip/publications/other_reports/, and the references in this 
report. However, it is important to keep in mind that emerging data are rapidly evolving. 

https://www.fhwa.dot.gov/planning/tmip/publications/other_reports/
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Section III 

Conducting Exploratory 
Modeling and Analysis 
Using TMIP-EMAT 
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3.0 Exploratory Analysis Using Travel Model 
Improvement Program-Exploratory Modeling and 
Analysis Tool 

TMIP-EMAT is not a transportation model in and of itself. It is a utility tool that enables an 
analyst to use the region’s transportation model for exploratory analyses. EMA has been used 
by planners to better understand systems with deep uncertainty by calibrating models that 
explain the system, where some inputs to the system have uncertainty associated with them, 
there are various policies or levers available to a decisionmaker to affect the system, and there 
are various outputs of the system which are of interest. An EMA research methodology explicitly 
treats the computational experiment (i.e., model) as a set of assumptions and hypotheses and 
aims to explore the impacts. This differs from treating the model as a predictive tool that is an 
accurate surrogate to the real world (Bankes, 1993). 

TMIP-EMAT is designed as a tool to engage stakeholders and policymakers in discussions 
around developing effective policies and facilitating discussions throughout an iterative and 
continuous planning process. With TMIP-EMAT, analysts, stakehoders and policymakers can 
explore key relationships between model inputs and outputs using interactive tools, study the 
range in outcomes to highlight that uncertainties exist in these relationships, and use the results 
to inform a robust decisionmaking approach. You can find the program code and the technical 
documentation at https://tmip-emat.github.io. 

In this chapter, the steps required to carry out an analysis using TMIP-EMAT are described. The 
results of a TMIP-EMAT analysis are presented, including the interpretation of results and how 
those results can be used to inform policy. 

3.1 Scoping for Exploratory Modeling Analysis 

The first step in an exploratory modeling analysis is the scoping step, which defines the goals 
and objectives of the analysis, as well as more specifically how those goals and objectives will 
be explored using the model. Several key components are necessary in the scoping step: 

1. Develop High-Level Scope Goals. The first step in the scoping process is to define the 
goals and objectives for doing the analysis and translate those into to policies that could 
support those goals and identify the uncertainties that could affect meeting the policies’ 
ability to meet the goals. These goals need not be overly specific, but should define a set of 
high-level objectives to explore using the model. 

2. Identify Model Functionality. In this step, the scoping goals are matched against the inputs 
and sensitivities of the core model along with potential performance measures. Inputs and 
sensitivities include both exogenous inputs, or uncertainty variables, that policymakers have 
little or no control over (e.g., fuel price) and endogenous policies, referred to as policy levers 
(e.g., tolls or transit fares). Performance measures are outputs of the model that can be 
used to assess how well goals and objectives are met based upon the set of policy options 
that are explored during the exploratory modeling analysis. 

https://tmip-emat.github.io/
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3. Finalize Scope. The set of uncertainties, policy-levers, and performance measures is 
assessed on the basis of priorities, as well as the functionality of the model and then 
finalized. There is a number of limiting factors that may prevent the full set of desired 
uncertainties, policy levers, and performance measures to be included within the final scope. 

High-Level Scoping 

The first step of the scoping process is a high-level scoping exercise, which is intended to get 
agency planners and modelers thinking about the goals and objectives of the analysis and what 
sets of policies, strategies, and uncertainties would be of interest in relation to those goals and 
objectives. Rather than limiting the exercise based upon the capabilities of a specific travel 
model, this step involves thinking more broadly about the goals and objectives. 

In the context of TMIP-EMAT, a goal is what the community is trying to accomplish. Some 
examples of common goals used in the TMIP-EMAT process include the following: 

• Increase transit ridership. 

• Reduce congestion and improve reliability. 

• Understand telecommuting effects on sprawl. 

• Improve economic opportunities and access in economically disadvantaged neighborhoods. 

• Reduce auto usage in the suburbs. 

• Understand future impacts of automated vehicles. 

• Improve financial stability of transportation system through tolls/managed lanes. 

• Improve freight movements. 

The specific goals of the analysis help to define other 
parameters of the analysis as well. For instance, in some 
cases the goals dictate the examination of a set of policies 
in conjunction with uncertainties, while in other cases, the 
analysis may be purely exploratory, examining effects of 
uncertainty only. 

The choice of goals impacts this decision. For instance, if a 
goal is to reduce congestion, it would make sense to formulate policy levers that have a chance 
of impacting future levels of congestion (e.g., pricing, highway expansion project, improvements 
to transit service, or other congestion management policies). Often multiple policy levers are 
considered that may each have different impacts on the set of goals. Conversely, if a goal is to 
better understand the impacts of automated vehicles, then policy levers may not be of interest 
since there is no clear objectives for impacting the system performance. In this case, an 
uncertainty driven analysis may be warranted. 

In some cases, the goals 
dictate the examination of a 
set of policies in conjunction 
with uncertainties, while in 
other cases, the analysis may 
be purely exploratory, 
examining effects of 
uncertainty only. 
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Identify Model Functionality 

Once the high-level scoping exercise is complete, it is necessary to identify the specific set of 
uncertainties and policy levers that will be tested and define how the uncertainties and policy 
levers are defined within the travel model. We define uncertainties and policy levers as follows: 

• Uncertainties. Uncertainties are factors outside the decisionmaker’s control that may have 
an effect on performance measures and may help or hinder the ability of policy levers to 
reach stated goals. Some examples of uncertainties are as follows: 

− Fuel prices. 

− Values of time. 

− Land use and demographics changes. 

− Impacts of automated vehicles. 

− Behavior-related sensitivities of the model. 

− Telecommuting levels. 

• Policy Levers. Policy levers are factors within the decisionmaker’s control that are 
implemented to help reach a defined goal or goals. Examples of policy levers include the 
following: 

− Highway capacity expansion. 

− Transit service changes. 

− VMT charge, tolls, and managed lanes. 

− Parking pricing. 

− Travel demand management strategies. 

− User-specific travel cost changes (e.g., transit subsidies for low-income population). 

− Land use policy (e.g., infill development). 

As part of identifying the uncertainties and policy levers to include in the analysis is translating 
the policy levers and uncertainties from high-level concepts (e.g., impacts of autonomous 
vehicles) to adjustable model inputs or parameters (e.g., allowable vehicle spacing or capacity 
on a highway). The representation of each uncertainty or policy lever may include a combination 
of input variables and parameters to appropriately represent the lever or factor within the model. 

An important component of this exercise is analyzing the model functionality. For instance, if the 
existing model does not have a mode choice component, testing policies around the impacts of 
added transit service would require large changes to the underlying core model to be tested 
effectively. Conversely, a model that includes auto operating costs as an input can easily test 
the impacts of changes to fuel prices. Examples of matching specific goals with policy levers 
and uncertainties are given later in this section. 
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In addition to the selection of uncertainties and policy 
levers, the scoping process also must define the range of 
each input to the model. Since these represent the inputs to 
the model that will be varied in the analysis, careful 
attention to these ranges is important as they will drive the 
results of the analysis. Some policy levers are simple 
binary variables—either the policy is enacted or not. Other 
policy levers and uncertainty variables are continuous 
variables that require careful consideration and review of 
other sources to arrive at a reasonable set of ranges. 

The scoping exercise also must identify key performance 
measures that can be used to evaluate the efficacy of policies and the extent to which goals of 
the analysis are achieved. Again, performance measures should be tied to the specific goals of 
the analysis, and the performance measures should be outputs from the core model (or metrics 
that can be derived from the results of the core model). Examples of performance measures 
that might be used in an exploratory modeling analysis include the following: 

• VMT (by vehicle class, speed, area, etc.). 

• Transit ridership. 

• Mode share. 

• Travel times for specific roadways or corridors. 

• Congestion and reliability measures. 

• Economically disadvantaged population measures, such as travel times or accessibility. 

• Revenue generated. 

In practice, one of the main limiting factors in the scoping process is the functionality of the 
existing core model. Policymakers and planners desire to evaluate uncertainties and policies 
that the travel model cannot appropriately model. This suggests a need to adapt or update the 
existing travel model to better handle these uncertainties or policies. These updates can either 
happen during the exploratory modeling process or as part of a larger modeling development 
effort. 

Often, the budget and schedule mandate model enhancements and sensitivity changes are 
done in a piecemeal manner that do not comprehensively account for specific uncertainties 
and/or policy levers. So, while it is not uncommon that changes to the model are performed 
during exploratory modeling, limiting the extent of these changes is desirable. 

It makes sense to consider the exploratory modeling process during a model update effort so 
that the types of variables that are anticipated for exploratory modeling can be included in the 
model in the most realistic possible ways and done so efficiently. In some cases, this may mean 
adding functionalities that are not used at all in the base year model (e.g., CAVs). It also may 
mean adding sensitivities that are not fully calibrated, but allow for testing of specific policies or 
uncertainties. 

Some policy levers are simple 
binary variables—either the 
policy is enacted or not. Other 
policy levers and uncertainty 
variables are continuous 
variables that require careful 
consideration and review of 
other sources to arrive at a 
reasonable set of ranges as 
they will drive the results of 
the analysis. 
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Finalize Scope 

An important component to the process is performing 
sensitivity tests to isolate how individual policy levers and 
uncertainties impact the key performance measures being 
considered. Performing such tests is important to do before 
finalizing the scope for the analysis. If an uncertainty or 
policy lever, as it is coded in the model, has little impact on 
the performance measures of interest, it may not be 
worthwhile including in the analysis since there is an 
opportunity cost associated with each policy lever and uncertainty. For each policy lever and 
uncertainty that are included, the experimental design will typically increase by about 10 full 
model runs. By determining when a policy lever or uncertainty is unimportant, the analysis can 
either replace that policy lever or uncertainty with another more impactful one, or remove it and 
reduce the number of full model runs required. 

The final number and set of policy levers and uncertainties that can be included in the 
application is dependent on the chosen core model(s) run times, the computer resources 
available, and schedule constraints for project analysis. As a rule of thumb, for meta-model 
development, 10 core model runs need to be run for each uncertainty and policy lever. 
Therefore, if there are 4 uncertainties and 4 policy levers, then the core model will need to be 
run 80 times. In addition, other model set-up constraints, such as number of individual highway 
networks that need to be coded, may dictate the number and set of policy levers that can be 
feasibly developed. 

Scoping Examples 

The following provides some specific examples of how the scoping process works. Two 
examples are provided to illustrate the approach. 

Example 1 

As a first example, consider the following goal for a hypothetical exploratory modeling exercise: 

• Examine the long-term vitality of transit in the region to serve various segments of the 
population under different transit-focused policy initiatives. 

In this case, policy levers should be included in an exploratory analysis approach. Policy levers 
that might be considered include the following: 

• Transit expansion to improve accessibility by transit to more of the region’s population. 

• Transit fare reduction for the entire population or subsidies offered to lower income 
populations to encourage transit ridership. 

• Increase service frequencies under the existing transit system to encourage transit ridership. 

An important component to 
the process is performing 
sensitivity tests to isolate how 
individual policy levers and 
uncertainties impact the key 
performance measures being 
considered. 



Uncertainty in Travel Forecasting: Exploratory Modeling and Analysis 
TMIP-EMAT: A Desk Reference 

July 2021 70 

• Parking price increases, especially in downtown areas, to encourage people to shift away 
from auto modes and to transit. 

• Elimination or reduction of parking costs at park-and-ride stations to encourage transit 
ridership. 

In addition to policies selected for evaluation, it is necessary to consider the uncertainties that 
may affect the “vitality of transit” and the uncertainties that may affect the ability of the selected 
policies to help achieve long-term transit vitality. In this case, the impacts of automated vehicle 
adoption could play a role in how competitive transit is in the future, and thus, may be an 
important set of uncertainties to consider. Other potential uncertainties in this case may include 
fuel price, which directly impacts the competitiveness of auto modes; telecommuting levels 
since transit services often cater more to work travel than nonwork travel; and sensitivities of the 
model to costs like parking prices and transit fares. 

The performance metrics that are included should help measure the “vitality of transit.” A 
number of transit-related performance measures may be relevant, such as ridership by transit 
mode; travel times by transit, especially to/from downtown and/or other major activity centers; 
transit accessibility for economically disadvantaged populations and the population as a whole; 
mode shares; and transit revenues. Other performance metrics also could be considered (like 
VMT or VHT), but may be less relevant to the specific goal associated with this example. 

It should be noted that the goal as stated, “Examine the long-term vitality of transit in the region 
to serve various segments of the population under different transit-focused policy initiatives,” 
suggests an exploratory analysis approach. However, if the goal was to quantitatively determine 
which policy lever best met the goal of increasing transit ridership and revenue, then a risk 
analysis approach may be more appropriate. A risk analysis allows for a probability distribution, 
and thus, a confidence value to be placed on the performance measure outputs, allowing for an 
analyst to state, with statistical confidency, that one policy lever produces higher transit ridership 
or revenue than another policy lever. 

Example 2 

As a second example, consider a case where the goals are as follows: 

• Reduce congestion. 

• Maintain current costs of travel. 

• Consider the impacts of automated vehicles. 

In this case, policy levers would clearly need to be included. This example lends itself nicely to 
an exploratory analysis rather than a risk analysis, since automated vehicles can be considered 
a “deep uncertainty” for which it is difficult to put an a priori probability distribution around the 
uncertainties associated with automated vehicles. Policies should be focused on those that can 
reduce congestion while maintaining the current costs of travel. Transit-related policies may be 
one avenue here—for instance, expanding transit and/or reducing transit fares. Other policies 
may include travel demand management policies like encouraging telecommuting behaviors, or 
more traditional policies such as highway capacity expansion. 
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In this case, there is a clear directive to consider the impacts of automated vehicles. 
Uncertainties related to automated vehicles would include the ways in which at different levels 
of market penetration it is anticipated these vehicles will impact travel behavior, including 
changes to highway capacity, value of time sensitivities, and changes to parking behaviors that 
may impact the amount people pay to park, among others (see earlier discussion of CAVs for 
more details). 

Key performance measures of interest in this case would include metrics related to congestion 
like VMT, VHT, delay, or corridor travel times, and those related to travel costs. 

3.2 Interfacing between Travel Model Improvement Program-Exploratory 
Modeling and Analysis Tool and the Core Model 

In order to perform the model runs of the core model efficiently and effectively, it is important 
that the core model be interfaced with TMIP-EMAT. This is done by developing an Application 
Programming Interface (API) that links to TMIP-EMAT, while also providing programmatic 
control of the core model, as shown in figure 11. 

 

Figure 11. Diagram. Travel Model Improvement Program-Exploratory Modeling and 
Analysis Tool deployment steps. 

(Source: Milkovits et al., 2019.) 

The TMIP-EMAT interfacing and API development process is described in detail in section 2.4.2 
of the Beta Test Report (Milkovits et al., 2019). Some of the key elements include the following: 

• Environment Configuration, where the Anaconda environment is set up, and the scope file 
is finalized for use in the API development. 
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• Model Programmatic Support involves developing code that can initialize a core model 
run, set the levels of input variables, launch and run the core model, and generate metrics 
from the model that can be parsed by TMIP-EMAT. 

• Python Development consists of developing scripts within TMIP-EMAT API that connect to 
the core model and results outputs. 

3.3 Running Experiments 

Exploratory Modeling versus Scenario Analysis 

Both exploratory modeling and its more limited cousin, scenario analysis, involve running a 
model a number of times with different input values and evaluating the results. The different sets 
of input values used comprise a design of experiments. From the perspective of actually running 
the underlying model, the main differentiators between traditional scenario analysis and the 
exploratory modeling process are: 1) the breadth of the design of experiments, and 2) how 
those experimental designs are constructed. 

Scenario analysis involves the development of different types of scenarios. They may be point 
estimates of a specific policy alternative that is being tested, they may involve a “representative” 
set of model inputs that reflect different model settings and policies, or they may involve 
extreme scenarios that serve to provide an estimate of lower or upper bounds on a specific 
forecast. More often, however, scenario analyses vary only one or two model inputs at a time. It 
also should be noted that sensitivity analysis is a form of scenario analysis. Thus, TMIP-EMAT 
can be set-up to do a systematic set of sensitivity analyses as part of model validation. In 
general, the set of inputs that is varied and the levels used for those inputs are selected 
explicitly by a domain expert (either an analyst or another stakeholder) based on that person’s 
judgment about the relative importance of each of the manipulated inputs with respect to that 
particular scenario. For example, an agency may choose to evaluate a “boundless growth” 
scenario that pairs rigorous economic growth across all sectors of the economy with high 
population growth and relaxed policies on carbon emissions, a “directed growth” scenario that 
funnels new development into the urban core and invests heavily in green transit technology, 
and a “default” scenario that presumes no change in current policies. In this example, each 
scenario assumes that two to three distinct uncertainties or policies change in conjunction with 
each other and have a very set level with regard to how it will change (i.e., a set population total 
for the high growth scenario). 

An exploratory modeling and analysis approach would address this modeling task differently. 
There remains an import role for the domain expert in establishing the scope of the analysis: 
deciding what sets or ranges of policy levers and/or exogenous uncertainties should be 
considered, given the modeling tools available and policy questions that need to be addressed. 
However, given these scoped inputs, the actual design of experiments can be developed using 
an efficient mathematical algorithm such as a Latin Hypercube, developed to focus on 
identifying the independent and correlated effects of each of the policy levers and exogenous 
uncertainties. In the context of the hypothetical agency described above, instead of examining 
three scenarios, an exploratory analysis would include establishing a set of policy levers (e.g., 
local carbon emission policy, development regulations, and green transit technology investment) 
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and exogenous uncertainties (e.g., economic growth, population growth, nationally imposed 
carbon taxes, each with a range of varying levels), allowing for no a priori assumptions to be 
made regarding the likelihood of each factor occurring in conjuction with other factors. Then an 
experimental design can be created by TMIP-EMAT, potentially defining as many as 60 different 
experiments (defined by the number of uncertainties and policy levers) to run with various 
combinations of all of these factors and levels of the factors. 

While the overall number of model runs is larger for the exploratory modeling approach (a rule 
of thumb is 10 model runs per uncertainty variable and policy lever) when compared to more 
limited scenario analysis, the tools offered by TMIP-EMAT can make both executing these 
model runs and analyzing the results a manageable effort. Adopting the exploratory modeling 
approach also offers a number of concrete benefits: 

• It allows for a direct representation of the uncertainty resulting from the set of uncertainty 
variables included in the analysis. The efficient experimental design results in a range of 
outcomes, not a point forecast. The range of outcomes can be used to study the uncertainty 
impacts over the domain of those variables. By explicitly accounting for uncertainty, risk can 
be assessed if that is important (e.g., in toll or revenue forecasts). This can be done by 
explicitly assigning distributions to the various uncertainties and examining the resulting 
performance measures and their respective distributions. 

• The collection of experiments allows the analyst to build a direct understanding of the 
relationships between policy levers, uncertainties, and performance measures. The only 
way this is possible is by having many core model runs so that interactions of different 
inputs and their joint impact on model outputs can be measured. 

• It is possible to develop metamodels for individual performance measures that are capable 
of predicting the resulting performance measures for a wider range of potential model inputs 
than are actually run using the core model. Metamodels are described in more detail later in 
this section. 

As noted above, one of the main benefits of using an appropriate experimental design is 
analyzing how the combination of inputs impacts the resulting performance measures. This is of 
particular value when an analyst has a collection of policies and wants to test these policies 
systematically. The exploratory modeling approach allows the analyst to test how different 
combinations of the potential policies might interact with 
one another to produce different results. 

These sorts of exploratory modeling tasks, using a large 
number of model runs, can relatively easily be undertaken 
using a strategic planning model, with limited detail and 
relatively quick runtimes. However, the tools in 
TMIP-EMAT make it possible to use the same exploratory 
modeling approach while taking advantage of much larger and more detailed travel demand 
models (TDM). By using a full-scale TDM for exploratory analysis, it becomes possible to drill 
deeper into the model results, as the set of outputs generated by the TDM are quite detailed 
and nuanced and include local area factors and regional factors alike. Any detailed model 

The exploratory modeling 
approach allows the analyst to 
test how different combinations 
of the potential policies might 
interact with one another to 
produce different results. 
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output from the TDM can be analyzed using TMIP-EMAT, not just high-level aggregate 
measures that also might be available from a strategic planning model. 

Using a Metamodel to Accelerate Experiments 

Within an exploratory modeling effort, an analyst may wish to conduct multiple different sets of 
experiments using different designs for different purposes. Evaluating models to discover 
interesting clusters of scenarios and uncover important patterns in the data requires a different 
set of experiments from developing an optimized set of policy levers, and both require different 
experiments from a probabilistic risk analysis. To support all of these different exploratory 
analyses, it is useful to have a model that can be evaluated quickly, ideally many times per 
second. This level of speed is not what we typically expect from TDMs, which generally require 
hours or days to complete a single experiment. 

To speed up the process of running the model many times, TMIP-EMAT includes a facility to 
automatically create a metamodel (Cambridge Systematics, Inc., 2018). By default, metamodels 
derived through TMIP-EMAT include two stages: a linear regression model to capture overall 
trends and simple linear relationships, and a gaussian process regression (GPR) model that can 
capture a wide variety of nonlinear effects. The GPR is a nonparametric model and has been 
found to generally perform well and improves the prediction over using only a linear regression 
model. The implemented combination of these two model structures provides the best of both 
worlds, giving a generally good model fit in many cases without the need for careful parametric 
tuning. 

Constructing Efficient Experimental Designs for Metamodel Development 

TMIP-EMAT provides algorithms to build efficient designs 
of experiments based on a defined modeling scope that 
usually are sufficient for developing metamodels. The 
creation of an experimental design is fully automated, 
although the analyst may wish to review the identified 
experiments to ensure that the scope parameters were set 
correctly. Specifically, this review entails checking to see 
that the scoped range is covered by the experiments, and 
confirming that the sampled experiments are sensitive to 
the chosen distributions of the uncertainty variables (if 
anything beyond a default uniform distribution is specified) 
with more likely outcomes sampled at a higher frequency. 
The use of nonuniform distributions can be beneficial for well-characterized uncertainty, if the 
analyst wants to ensure better quality (i.e., denser) results in the heart of the uncertainty space, 
and specifically for conducting risk analysis. 

By default, TMIP-EMAT is implemented with a Latin Hypercube sampling experiment design 
approach, although this design algorithm can be overridden by experienced users, if desired. 
This default design was selected because it is generally an efficient design to support the 
development of a metamodel. Metamodels for deterministic simulation experiments, such as 

Review that the scoped range 
is covered by the experiments 
and confirming that the 
sampled experiments are 
sensitive to the chosen 
distributions of the uncertainty 
variables (if anything beyond a 
default uniform distribution is 
specified) with more likely 
outcomes sampled at a higher 
frequency. 
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most travel demand models, are best 
supported by a “space filling” design of 
experiments, such as Latin Hypercube 
draws (Sacks et al., 1989). A Latin 
Hypercube sample for one dimension is 
constructed by subdividing the distribution of 
each input factor into N equally probable 
ranges, and drawing one random sample 
within each range. 

The Latin Hypercube design of experiments 
is advantageous over a factorial or grid-
based design, as every experimental 
observation can provide useful information, 
even when some input factors are potentially 
unimportant or spurious. Figure 12 provides 
an illustration of this, because every design 
experiment is unique in each input 
dimension, and all of the observations 
provide unique and useful information even if 
one dimension is spurious. By contrast, the 
factorial grid of observations collapses on 
itself with some data points simply 
replicating others, severely limiting the 
amount of useful information from the nine 
experiments. Figure 12. Diagram. Contrasting 

experimental designs. 

(Source: FHWA, 2018.) One additional advantage of using a Latin 
hypercube design of experiments, as is done 
in TMIP-EMAT, is that the required number of experimental runs is not directly dependent on 
the dimensionality of the input variables and, importantly, does not grow exponentially with the 
number of dimensions. With a factorial or grid-based design, the number of experiments 
required does expand exponentially with the number of input dimensions. Practical experience 
across multiple domains has led to a “rule of thumb” that good results for prediction can be 
obtained from 10 experimental data points per input variable dimension (Loeppky et al., 2009). 

One important consideration in the design of experiments for exploratory analysis is the 
treatment of differences between policy levers and exogenous uncertainties. For many 
analytical analyses, the design of experiments will want to preserve this distinction and maintain 
a full factorial cross section between these two groupings. That is, for any complete set of policy 
levers being analyzed, the design should include experiments that match those policies for all of 
the various set of uncertainties being modeled and vice verse. This partial factorial design will 
ensure that reasonable results can be obtained, and subsets of experiments that manipulate 
policy levers or uncertainties always represent the direct effects of these manipulations, and are 
never merely a fluke of how policy levers and uncertainties interact, especially since the 
treatments of policy levers and exogenous uncertainties are manifestly different from each other 
in application. This option may be desirable if metamodels are not needed for the analysis. 
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However, metamodel development has a singular goal that is quite different from policy 
analysis: to make the mathematical operation of the metamodel as close as possible to that of 
the original core model. To this end, any relationship between the core model and any “real 
world” systems or decisionmaking paradigm is incidental. From a purely mathematical 
perspective, the metamodel should only be improved by 
maximizing variability across all input dimensions 
simultaneously for all the reasons outlined in the discussion 
of the Latin hypercube above. The TMIP-EMAT 
design_experiments tool is able to switch easily between 
metamodel development-focused designs and exploratory 
analysis designs simply with a change in settings. 

3.4 Exploring the Results 

A key element of exploratory modeling is the interpretation of results, since the results of this 
type of analysis are different than typical scenario analyses. Instead of producing point 
forecasts, the exploratory modeling approach produces a range of potential outcomes for a 
given policy or set of policy options. This allows for more indepth analyses of the overall set of 
model inputs and outputs. TMIP-EMAT offers a number of different tools to support these 
analyses, including the following: 

• Visualization tools to display multiple model outputs together. 

• Scenario Discovery tools that are focused on finding clusters of scenarios that are 
interesting to the user. 

• Directed Search tools to find robust policies that will work well across many scenarios. 

Each of these sets of tools is potentially relevant across a 
broad range of applications, but certain tools are more 
useful in certain applications. For example, when 
integrating TMIP-EMAT with a strategic planning model, 
such as VisionEval’s Regional Strategic Planning Model 
(RSPM), analysts may want to focus on the scenario 
discovery tools, which can be used to highlight interesting 
clusters of inputs and outputs for further analysis. These 
clusters can form the basis for deeper analysis using a more detailed network-based travel 
demand model. On the other hand, because strategic planning models are less detailed, it may 
not be as important to employ robust multiobjective optimization tools, such as those available 
among the directed search tools. 

Visualization Tools 

Scatter Plot Matrix Visualizations 

Visualization tools are an important part of the exploratory modeling process. They allow 
analysts and other stakeholders to conceptualize the potentially complex relationships 
represented in transportation models. 

The TMIP-EMAT 
design_experiments tool is 
able to easily switch between 
metamodel development-
focused designs and 
exploratory analysis designs. 

Interesting clusters of inputs 
and outputs from a strategic 
model highlighted by scenario 
discovery tools can form the 
basis for deeper analysis 
using a more detailed 
network-based travel model. 
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The simplest set of visualization tools illustrated in TMIP-EMAT are scatter plot matrices. 
Sometimes referred to by the abbreviation “SPLOM,” a scatter plot matrix is a collection of two-
dimensional plots, each showing a contrast between two factors. The two factors are often an 
input parameter (i.e., an uncertainty or a policy lever) and an output performance measure, 
although it aso is possible to plot inputs against inputs or outputs against outputs. To facilitate 
reading the plots, they are arranged in a grid (i.e., a matrix), where all the plots in a single row 
share a common Y-axis, and all the plots in a single column share a common X-axis. 

A portion of an example SPLOM, as generated using the display_experiments tool in the 
emat.analysis subpackage from TMIP-EMAT, is shown in figure 13. The display_experiments 
tool can automatically create a scatter plot matrix that crosses every parameter with every 
measure, simply by providing the exploratory scope and the results. By default, plots that 
display policy levers are shown in blue, and plots that show exogenous uncertainties are in red, 
but this colorization can be overridden or deactiviated if desired. Although each panel of the 
SPLOM displays only two dimensions, the entire SPLOM in aggregate can be used to gain a 
general understanding of modeled relationships across multiple dimensions simultaneously. For 
example, in figure 13, it is easy to spot the strong and clear relationship between no build time 
and input flow (first row, third column) and to see that relationship is mirrored, but less well 
defined on the other performance measures (other rows). 

Reviewing experimental results in this way can be instructive not only for exploratory analysis, 
but also for validation of the results from the core model. An analyst can quickly see the 
direction, magnitude, and shape of various parametric relationships in the model, and easily 
detect any parameters that are giving unexpected results. 

The visualization tools in TMIP-EMAT also demonstrate an alternative use for scatter plot matrix 
figures: comparing two different sets of model results. To use a scatter plot matrix visualization 
to contrast two set of experiments, they will need to be derived from the same (or substantially 
similar) scopes, so that the various factors embedded in the rows and columns of the scatter 
plot matrix appear in both sets of results. This is particularly valuable to evaluate the 
performance of metamodels that are derived from core models, as they naturally share design 
scopes, as we can generate scatter plot matrices that show experiments from both the core and 
meta models. The contrast_experiments tool in the emat.analysis subpackage from 
TMIP-EMAT, demonstrates this capability using different colors to denote different sets of 
experiments, instead of denoting different kinds of inputs. An example of this is shown in 
figure 17, which contrasts the actual core model experimental runs against similar results 
generated by a metamodel based on those runs. 



Uncertainty in Travel Forecasting: Exploratory Modeling and Analysis 
TMIP-EMAT: A Desk Reference 

July 2021 78 

 

Figure 13. Graph. An example scatter plot matrix. 

(Source: TMIP-EMAT Sample Output.) 
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Figure 14. Graph. An example scatter plot matrix contrasting the results of core model runs and metamodel runs. 

(Source: TMIP-EMAT Sample Output.) 
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Interactive Visualizations of Experimental Designs 

The various scatter plot matrix visualizations described above offer a static view of a set of 
exploratory modeling results, perfectly suitable for inclusion in printed reports and other fixed 
representations. When used in a Jupyter notebook environment, TMIP-EMAT also allows for the 
use of dynamic, interactive visualization tools. 

The basic interactive visualization interface in TMIP-EMAT is inspired by a similar tool provided 
with the VisionEval package. To use the interactive visualizer, an analysis will provide the 
results from design of experiments. These results can be a modest number of experimental 
model runs executed with a slow-running core model, or a large number of experimental model 
runs executed with a fast-running core model or a metamodel. The default visualization then 
renders each dimension of analysis (policy lever, exogenous uncertainty, or performance 
measure) as a histogram showing the distribution of that dimension across the various 
experiments included in the analysis. 

Although a central tenet of exploratory modeling is a transition away from “point forecast” single 
model runs, the use of point forecasts is widely ingrained in transportation modeling and 
analysis, and TMIP-EMAT provides the possibility to add a single point forecast as a reference 
point against which as spectrum of other experimental results can be displayed in the interactive 
visualization tools. Such a default result is shown in figure 15, where the reference model inputs 
and result are displayed as black dotted lines on each figure. 
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Figure 15. Screenshot. An interactive exploratory modeling visualization before any 
selections have been made. 

(Source: TMIP-EMAT Sample Output.) 

The real power of this visualization in TMIP-EMAT is the ability to make subset selections on 
any histogram displayed, and observe the corresponding subsets across all the other 
dimensions of analysis. For example, using the analysis shown in figure 15, the analysis can 
choose to focus on scenarios where the “Expand Amount” policy lever is set to 50 or greater, 
and the “Debt Type” is set to general obligation bonds. In each case, these selections can easily 
be made by a simple click-and-drag selection on the relevant histogram, or by making a 
selection programmatically using Python. Given any particular selections, the entire set of 
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dynamically linked figures will update to show those given selections. Given the example 
selection described above, the figures will update to appear like the versions shown in figure 15 
(note that only a small number of the histograms is displayed as illustration). The “active” 
selection boundaries are displayed with green rectangles on those dimensions that include the 
selection criteria. The selected cases represent only about 1/6 of the total number of 
experimental runs in this design, and the highlighted solid lighter orange region may appear 
small in some figures, so a dotted line echo of the shape of the selection is also displayed. In 
this example, we can see that the shape of the distribution in the “Net Benefits” panel is shifted 
leftward from the overall set of scenarios. 

 

Figure 16. Histogram. Some interactive exploratory modeling visualizations after some 
selections have been made. 

(Source: TMIP-EMAT Sample Output.) 

The TMIP-EMAT interactive visualizer also can create an interactive two-dimensional scatter 
plot, linked to the same selections used in the one-factor histograms. This allows the user to 
specify the variables for both the x and y axis, and either can be any policy lever, exogenous 
uncertainty, or performance measure. These dimensions can be changed interactively later as 
well. The resulting scatter plot is linked to the same selection of experiments in the interactive 
one-dimensional figures shown above, and by default the same experiments are highlighted in 
the same color scheme in all of these related figures. 
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Figure 17. Graph. A two-dimensional interactive scatter plot. 

(Source: TMIP-EMAT Sample Output.) 

One useful feature of the interactive scatter plot is the ability to manually “lasso” a selection of 
data points. This lasso selection does not need to be anything like a rectangular box selection, 
as we have seen so far. Once a lasso selection of data points is made in the figure above, you 
can choose “Use Manual Selection” from the Edit Selection… menu at right, which will create a 
new Visualizer selection from the selected data. The highlight color changes to signify that this 
is not an editable rectangular box, and the selected data will be highlighted in all figures linked 
together, including other scatter plots and one-factor histograms. 
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Figure 18. Graph. A two-dimensional interactive scatter plot with a nonrectangular 
selection. 

(Source: TMIP-EMAT Sample Output.) 

In addition to the single scatter plot, which offers a feature-packed view of two dimensions at a 
time, there also is a scatter plot matrix option, which displays a configurable matrix of similar two 
dimensional views. This matrix has fewer interactive features than the single scatter plot, but still 
dynamically updates in response to interactive changes in the other figures. 
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Figure 19. Graphs. A dynamically updating interactive scatter plot matrix. 

(Source: TMIP-EMAT Sample Output.) 

Scenario Discovery 

While visualization tools are focused on letting the analyst see and understand patterns and 
relationships in model results, scenario discovery tools focus on using computational algorithms 
to uncover those patterns for us. Both types of analysis are potentially valuable across a wide 
range of applications, but scenario discovery tools typically become even more useful as the 
dimensionality of our models (i.e., the number of policy levers and exogenous uncertainties 
considered) increases. 

Feature Scoring 

Feature scoring is a technique that allows an analyst to identify the inputs (in machine learning 
terminology, “features”) that have the largest impacts on particular performance measures. The 
relationships measured are not necessarily linear, but rather can be any arbitrary linear or 
nonlinear relationship. The feature scores are determined based on a design of model 
experiments, and are therefore a product not only of the model, but also the domain (i.e., the 
range) of the applied input factors. 
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For example, consider the function Y(A,B,C) = A/2 + sin(6πB) + ε, where A, B, and C are input 
features; and ε is random white noise. We can readily tell from the functional form that the B 
term is the most significant when all parameter vary in the unit interval, as the amplitude of the 
sine wave attached to B is 1 (although the relationship is clearly nonlinear), while the maximum 
change in the linear component attached to A is only one-half, and the output is totally 
unresponsive to C. If we use the TMIP-EMAT visualization tools to generate a scatter plot matrix 
of 5,000 samples from this model as in figure 20, we could observe visually that B is the 
dominant factor in determining the output measure. 

 

Figure 20. Graphs. Scatter plots visualizing feature scoring for the example function in 
the unit domain. 

(Source: TMIP-EMAT Sample Output.) 

In contrast, examining the exact same model under a broader domain yields different feature 
scores. Figure 21 illustrates this, applying the same model over an input range five times wider. 
The oscillations of B are still visible, but now look much more like white noise, while the effect of 
A is more pronounced. The computed feature scores follow this change with the bulk of the 
relative importance shifting from B to A. 
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Figure 21. Graphs. Scatter plots visualizing feature scoring for the example function in a 
larger domain. 

(Source: TMIP-EMAT Sample Output.) 

The feature scoring tools in TMIP-EMAT can automatically calculate and display feature scores 
for the full set of performance measures defined for a model scope, or a subset thereof. An 
example of the feature scores table produced by TMIP-EMAT is shown in figure 22. The colors 
on the returned table highlight the most important input features for each performance measure 
(i.e., in each row). The yellow highlighted cell indicates the most important input feature for each 
output feature, and the other cells are colored from yellow through green to blue, showing high-
to-low importance. 

 

Figure 22. Screenshot. Example feature scores for the road test model. 

(Source: TMIP-EMAT Sample Output.) 

Threshold scoring provides a set of feature scores that do not relate to the overall magnitude of 
a performance measure, but rather whether that performance measure is above or below some 
threshold level. TMIP-EMAT includes a threshold_feature_scores function that computes such 
scores for a variety of different thresholds to develop a picture of the relationship across the 
range of outputs for a particular performance measure. 

In figure 23, we can see that expand_capacity is important in determining the magnitude of 
negative outcomes, but for understanding whether we will have positive or negative outcomes, 



Uncertainty in Travel Forecasting: Exploratory Modeling and Analysis 
TMIP-EMAT: A Desk Reference 

July 2021 88 

we should focus more on input_flow; and if we are interested in the magnitude of positive 
outcomes, we should look to input_flow and to a lesser, but still meaningful extent also the 
value_of_time. 

 

Figure 23. Graph. Example threshold feature scores for net benefits in the road test 
model. 

(Source: TMIP-EMAT Sample Output.) 

Patient Rule Induction Method 

The Patient Rule Induction Method (PRIM) is a scenario discovery algorithm that operates on an 
existing set of data with model inputs and outputs (i.e., you have already designed and run a set 
of experiments using either a core model or a metamodel). Several slightly different versions of 
PRIM can be constucted, but TMIP-EMAT provides a tool that implements the PRIM algorithm 
based on the EMA Workbench implementation. Generally, a decently sized set of experiments 
(hundreds or thousands) is used to describe the solution space, although no minimum number 
of experiments is formally required. 

PRIM is used for locating areas of an outcome space that are of particular interest, which it does 
by reducing the data size incrementally by small amounts in an iterative process as follows: 

• Candidate boxes are generated. These boxes represent incrementally smaller sets of the 
data. Each box removes a portion of the data based on the levels of a single input variable. 

− For categorical input variables, there is one box generated for each category with each 
box removing one category from the data set. 

− For integer and continuous variables, two boxes are generated—one box that removes a 
portion of data representing the smallest set of values for that input variable and another 
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box that removes a portion of data representing the largest set of values for that input. 
The step size for these variables is controlled by the analyst. 

• For each candidate box, the relative improvement in the number of outcomes of interest 
inside the box is calculated, and the candidate box with the highest improvement is 
selected. 

• The data in the selected candidate box replaces the starting data and the process is 
repeated. 

The process ends based on a stopping criteria. For more 
details on the algorithm (see Friedman and Fisher (1999) or 
Kwakkel and Jaxa-Rozen (2016). The PRIM algorithm is 
particularly useful for scenario discovery, which broadly is 
the process of identifying particular scenarios of interest in 
a large and deeply uncertain dataset. In the context of 
exploratory modeling, scenario discovery is often used to 
obtain a better understanding of areas of the uncertainty 
space, where a policy or collection of policies performs 
poorly because it is often used in tandem with robust 
search methods for identifying policies that perform well 
(Kwakkel and Jaxa-Rozen, 2016). 

In order to use PRIM for scenario discovery, the analyst must first conduct a set of experiments. 
This includes having both the inputs and outputs of the experiments (i.e., the model or 
metamodel has already been run). The analyst also must identify what constitutes a case that is 
“of interest.” This is essentially generating a True/False label for every case, using some 
combination of values of the output performance measures, as well as (possibly) the values of 
the inputs. Some examples of possible definitions of “of interest” might include the following: 

• Cases where total predicted VMT (a performance measure) is below some threshold. 

• Cases where transit farebox revenue (a performance measure) is above some threshold. 

• Cases where transit farebox revenue (a performance measure) is above 50 percent of 
budgeted transit operating cost (a policy lever). 

• Cases where the average speed of tolled lanes (a performance measure) is less than free 
flow speed, but greater than 85 percent of free flow speed (i.e., bounded both from above 
and from below). 

• Cases that meet all of the above criteria simultaneously. 

The salient features of a definition for “of interest” is that: 1) it can be calculated for each case if 
given the set of inputs and outputs, and 2) that the result is a True or False value. When 
conducted using the tools in TMIP-EMAT, the PRIM algorithm will generate a number of 
different possible boxes along a (heuristically) optimal trajectory, trading off coverage against 
density. 

In the context of exploratory 
modeling, scenario discovery 
is often used to obtain a better 
understanding of areas of the 
uncertainty space where a 
policy or collection of policies 
performs poorly because it is 
often used in tandem with 
robust search methods for 
identifying policies that 
perform well. 
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Coverage is percentage of the cases of interest that are in the box (i.e., number of cases of 
interest in the box divided by total number of cases of interest). The starting point of the PRIM 
algorithm is the unrestricted full set of cases, which includes all outcomes of interest, and 
therefore, the coverage starts at 1.0 and drops as the algorithm progresses. Density is the share 
of cases in the box that are case of interest (i.e., number of cases of interest in the box divided 
by the total number of cases in the box). As the box is reduced, the density will increase (as that 
is the objective of the PRIM algorithm). For the statistically minded, this tradeoff also can be 
interpreted as the tradeoff between Type I (false positive) and Type II (false negative) errors. 
High coverage minimizes the false negatives, while high density minimizes false positives. 

By default, the PRIM algorithm sets the “selected” box position as the particular box at the end 
of the peeling and pasting trajectory, which has the highest density, but generally the smallest or 
close to the smallest coverage. Figure 24 shows the tradeoff curve as a static plot of points 
mapping coverage versus density, as created using the show_tradeoff command. The colors 
along the trajectory indicate the number of restricted dimensions used to define each box. 

 

Figure 24. Chart. Example Patient Rule Induction Method trajectory. 

(Source: TMIP-EMAT Sample Output.) 

The results of a PRIM analysis can be used in conjunction with the interactive exploration tools 
to find interesting scenarios within a large multidimensional input space, and to identify different 
combinations of policy strategies that can achieve a portfolio of different goals. 
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Classification and Regression Trees (CART) 

Classification and Regression Trees (CART) also can be used for scenario discovery, and 
TMIP-EMAT provides a basic tool to do so. This algorithm partitions the explored space (i.e., the 
scope) into a number of sections, with each additional partition being added in such a way as to 
maximize the difference between observations on each side of the newly added partition divider, 
subject to some constraints (e.g., there must be some minimum number of observations in each 
partition). 

Directed Search 

The scenario discovery tools outlined above are focused on exploring parameters and 
outcomes across a preset sample of model runs. This sample can be small or quite large, but 
the tools only consider cases that have already been evaluated. In the suite of TMIP-EMAT 
directed search tools, an analyst will find tools that will propose and execute new cases. 

Policy Contrast 

The policy contrast viewer, also known as the “AB” viewer, allows an analyst to compare the 
outcomes of two different sets of policies to get an understanding of how they differ. The tool 
runs the model across a distribution of inputs, and displays the resulting distribution of 
performance measure outputs. By default, uncertainties are modeled using the distributions 
contained in the model scope, while policy levers are each manipulated to be a specific value. 
Two sets of model runs are generated by making random draws from all the relevant 
distributions, and then running the model for every combination of random draws and each set 
of specific-value inputs. For example, if the number of background random draws is set at 250, 
then 500 model runs are conducted, 250 each for the 2 different sets of selected policy levers. 
The exact same random draws are used for both groups of model runs, so that any variation in 
the performance measures can be unambiguously linked to the changes in the specific-value 
inputs, instead of being a result of input stochasticity. 

The policy contrast viewer has two principal parts: 

1. The interface (shown in figure 25) has interactive controls for the analyst to control the tool. 
Each exogenous uncertainty and policy lever is represented by a row of controls. The left-
most toggle, next to the parameter name, controls whether each input is in “distribution” or 
“specific value” mode. This allows, for example, setting one uncertainty to particular high 
and low values, to visualize threats and opportunities. 

a. When a parameter is set to distribution mode, a readout of the shape and extent of the 
distribution is provided. There are no other controls for parameters in this mode. 

b. When a parameter is set to specific value mode, an additional set of controls appears in 
the row. Two sliders are shown along with value read outs. The left and right sliders 
control the "A" and "B" settings, respectively. 
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Figure 25. Screenshot. The Travel Model Improvement Program-Exploratory Modeling 
and Analysis Tool policy contrast interface. 

(Source: TMIP-EMAT Sample Output.) 

2. The figure viewer (figure 26) can be shown using the `get_figures` command. This 
command allows for naming a curated list of specific performance measure outputs, instead 
of generating figures for all performance measures. Each figure contains two plots. The left 
plot is an asymmetric violin plot, showing the distribution for that performance measure 
under the A (green, upper half) and B (purple, lower half) policies. The right-hand figure 
shows in red the distribution of the paired differences between the A and B results. These 
differences are not aggregate differences for A and B, but rather the distribution of the 
differences for the same random draw in each group. 

 

Figure 26. Charts. Examples of results from the Travel Model Improvement Program-
Exploratory Modeling and Analysis Tool policy contrast tool. 

(Source: TMIP-EMAT Sample Output.) 
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There are several notable features of the policy contrast tool: 

• Using the TMIP-EMAT policy contrast viewer interactively requires a model that is 
rerunnable in near real time, as every time the “recompute” button is pushed, the model will 
need to be run hundreds of times before the figures can be updated. This can be a very 
simple model or a metamodel of a more complex model. 

• The analyst also specifies the number of background model runs that will be conducted to 
simulate the distribution of parameters set to “distribution” mode. Generally, a few hundred 
runs will be sufficient to get a reasonable high-level overview of the distributions. 

Optimization 

Typically, transportation planning models will be used to try to find policies that provide the 
“best” outcomes. In a traditional analytical environment, that typically means using models to 
find optimal outcomes for performance measures. Transportation models as used in the 
TMIP-EMAT framework are generally characterized by two important features: they are subject 
to significant exogenous uncertainties about the future state of the world, and they include 
numerous performance measures for which decisionmakers would like to see good outcomes. 
Therefore, optimization tools applied to these models should be flexible to consider multiple 
objectives, as well as be robust against uncertainty. 

One approach to managing a multiobjective optimization problem is to distill it into a single 
objective problem by assigning relative weights to the various objectives. This can be difficult to 
accomplish in public policy environments that are common in transportation planning for a 
variety of reasons, including the following: 

• Multiple stakeholders may have different priorities and may not be able to agree on a 
relative weighting structure. 

• Certain small improvements in a performance measure may be valued very differently if they 
tip the measure over a regulated threshold (e.g., to attain a particular mandated level of 
emissions or air quality). 

Instead of trying to simplify a multiobjective into a simple-objective one, an alternate approach is 
to preserve the multiobjective nature of the problem and find a set or spectrum of different 
solutions; each of which solves the problem at a different weighting of the various objectives. 
Within a set of solutions for this kind of problem, each individual solution is “Pareto optimal,” 
such that no individual objective can be improved without degrading at least one other objective 
by some amount. Thus, each of these solutions might be the “best” policy to adopt, and exactly 
which is the best is left as a subjective judgment to decisionmakers, instead of being a 
concretely objective evaluation based on mathematics alone. 

Optimization tools in exploratory modeling are not limited trying to discover the best solution; 
sometimes optimization is used to find the worst outcomes as well. TMIP-EMAT offers several 
different approaches to optimization; each of which can offer different insights into the 
policymaking process for stakeholders and analysts alike. 
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The simplest optimization tool available for TMIP-EMAT users is a search over policy levers, 
which represents multiobjective optimization, manipulating policy lever values to find a Pareto 
optimal set of solutions, holding the exogenous uncertainties fixed at a particular value for each 
uncertainty (typically at the default values). This is often a useful first step in exploratory 
analysis, even if your ultimate goal is to eventually undertake a more robust optimization 
analysis. This less complex optimization can give insights into tradeoffs between performance 
measures and reasonable combinations of policy levers. 

To conduct an optimization search over levers, the analyst can use the optimize method of the 
TMIP-EMAT model class, setting the search_over argument to 'levers'. In a Jupyter notebook 
environment, an analyst can monitor convergence visually in real time in the figures that will 
appear automatically when optimizing. An example of these displays is shown in figure 27. 

 

Figure 27. Charts. Example convergence displays. 

(Source: TMIP-EMAT Sample Output.) 

Once converted, TMIP-EMAT returns potentially not just one solution, but a Pareto optimal set 
of different resulting solutions, as well as some information about how they were derived. One 
way that TMIP-EMAT users can visualize the set of solutions is by using a parallel coordinates 
plot (figure 28), which is composed of a number of vertical axes, one for each column of data in 
the results table. By default, the axes representing performance measures to be minimized are 
inverted in the parallel coordinates, such that moving up along any performance measure axis 
results in a “better” outcome for that performance measure. 

https://en.wikipedia.org/wiki/Parallel_coordinates
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Figure 28. Graph. An example parallel coordinates plot of results from a search over 
levers using the example road test model. 

(Source: TMIP-EMAT Sample Output.) 

In the example shown in figure 28, the four policy levers appear as the first four vertical axes. 
Several observations can be made: 

• Nearly all of the Pareto optimal policy solutions for our reference scenario share an 
amortization period of 50 years, and all share a debt type of “Paygo.” 

• The set of optimal solutions include multiple different values for the expand capacity lever, 
ranging from 0 to 100. These different values offer possible tradeoffs among the 
performance measures: lower levels of capacity expansion (shown in yellow) will maximize 
net benefits and minimize the cost of the project, but they will also fail to provide much travel 
time savings. This tradeoff is visually cued by a characteristic “twist” in the chords that 
appears towards the right side of figure 28. It is left up to the analysts and decisionmakers to 
judge what tradeoffs to make between these conflicting goals. 

We can apply the same multiobjective optimization tool in reverse to undertake a worst case 
discovery. In such an analysis, generally the analyst will flip from manipulating levers given fixed 
values of the uncertainties to manipulating uncertainties given a particular set of policy lever 
settings. In addition, the optimization engine is reversed, to search for the worst outcomes 
instead of the best ones. 

An example set of results from a worst-case analysis are shown in figure 29, where a large road 
capacity expansion project is undertaken. The large number of chords in this figure represents 
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the very broad number of ways that things can go very badly for this model. The colorization can 
assist in interpreting the results, as it highlights the characteristic tradeoff “twist” so often visible 
in such results. In this example, we can observe two basic sets of worst case problems: we can 
do badly because high traffic flows cause congestion, or we can do badly because low traffic 
flows mean there would have been little congestion anyway, and our very expensive public 
works project delivered minimal benefit. 

 

Figure 29. Graph. An example parallel coordinates plot of results from a worst-case 
analysis using the example road test model. 

(Source: TMIP-EMAT Sample Output.) 

Robust Optimization 

In addition to the multiobjective nature of optimization in TMIP-EMAT, analysts may wish to 
optimize not only to find a solution that is ideal for one particular scenario, but rather a robust 
solution. Robust optimization is a variant of the more traditional optimization problem, where 
policies that yield good outcomes across a range of possible futures are sought, rather than the 
best outcome for a particular future. As it has some important implementation features that are 
distinct from other optimization problems, robust optimization is implemented in TMIP-EMAT as 
a distinct tool. 

To perform robust optimization using TMIP-EMAT, in addition to providing a core model (or 
metamodel) with defined input and output parameters, an analyst will need to define one or 
more functions called “robustness measures” that define what a robust measure represents. 
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For example, consider the example policies shown in figure 30. In this example, we could 
compute a varitey of robustness measures shown on the right-hand side of the figure. In this 
example, policy 3 performs best if the robustness measure is to select the maximum possible 
outcome of the performance measure, while policy 2 performs best if the robustness measure is 
selected as the mean, median, or 90th percentile of the performance measure across values of 
the exogenous uncertainty. 

 

Figure 30. Chart. Example policy outcomes and robustness measures. 

(Source: TMIP-EMAT Sample Output.) 

Implementing robust optimization in TMIP-EMAT requires an analyst to define the relevant 
robustness functions. As illustrated above, the functional form of robustness functions can be 
many different things depending on the particular application, risk tolerances of stakeholders, 
and expectations about the future, so TMIP-EMAT does not implement a mechanism to 
generate them automatically. Instead, it is left to the analyst to develop a set of robustness 
functions that are appropriate for each application. 

Several features of the robust optimization tool in TMIP-EMAT include the following: 

• A robust measure is created in TMIP-EMAT using the same Measure object types used for 
performance measures that are direct model outputs. 

• Robust measures have two important additional attributes: a variable_name, which names 
the underlying performance measure upon which this robust measure is based, and a 
function that describes how to aggregate the results. Typical functions used for robust 
optimization include the minimum, maximum, and percentiles. 
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• More abstract robustness measures also can be created. For example, we can compute the 
percentage of scenarios where the net benefits of a project are positive, or where 
greenhouse gas emissions are below a particular statutorily mandated level.

• The robust optimization process in TMIP-EMAT can be constrained to only include solutions 
that satisfy certain constraints.

• The robust optimization process generally is much slower than other multiobjective 
optimizations in TMIP-EMAT, as each iteration of the process entails running the underlying 
model not once, but many times, to evaluate the various robustness measures against a 
sample of numerous different sets of exogenous uncertainties.

Once completed, the results of a robust optimization look very similar to those of the other 
optimization processes outlined above and can be analyzed in many of the same ways. 
Figure 31 illustrates a parallel coordinates plot showing the various pareto-optimal robust 
outcomes. Since each possible set of policy levers is evaluated against not just one set of 
uncertainties, but a large pool of different values, the performance measures shown in this 
figure are not the raw performance measures from the actual model runs, but instead the 
robustness measures are displayed. Figure 31 again shows a characteristic twist on the right 
side indicating a tradeoff: better values for 95th percentile project cost must be traded off against 
better values for the expected travel time savings. Again, TMIP-EMAT makes no assertion 
about how to value this tradeoff, but defers these value judgments to analysts and stakeholders. 

Figure 31. Graph. Example robust optimization results. 

(Source: TMIP-EMAT Sample Output.) 
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3.5 Using the Results 

The tools provided by TMIP-EMAT, and by exploratory modeling more generally, are meant to 
be descriptive, and not prescriptive. Each tool is built to provide insight into the relationships 
between policy levers, uncertainties, and performance measures. The end goal of the analysis 
is not to provide explicit guidance about what decisions are “best,” but to allow decisionmakers 
and other stakeholders to better grasp the tradeoffs between different courses of action, and 
help to facilitate and focus discussion about policy actions. 

In particular, TMIP-EMAT’s tools can help analysts craft and visualize narratives around the 
quantitative results of travel demand models. The multidimensional and multiobjective nature of 
the tools pairs well with the nuanced and multifaceted nature of the transportation system. 
Rather than simply putting the interactive tools in the hands of stakeholders and inviting them to 
explore for themselves, analysts may find it more useful to explore and vet ideas on their own, 
and then use the interactive tools to walk stakeholders through the “story” of the model, pointing 
out and discussing key relationships and tradeoffs. In these discussions, often the simplest 
exploratory analysis tools can be the most compelling: the feature scoring tools, which 
succinctly describe the relative importance of each model input on each output, have generally 
triggered the most discussion about the exploratory modeling results, especially in discussions 
with stakeholders outside the core team of model developers who are intimately familiar with the 
mathematical structure of the core model. 

Just as a good story can be enhanced by working with an editor to iteratively make revisions 
and enhancements, so too can exploratory modeling be made more effective by reworking 
scopes and models. TMIP-EMAT applications are best conducted as iterative processes with 
the expectation that the set of policy levers, exogenous uncertainties, and performance 
measures will be refined in response to the results of earlier exploratory analyses. Ideally, the 
scoping exercises outlined at the beginning of this section are not a one-time event at the 
beginning of the modeling processes, but can be repeated again after some results are 
available, allowing all stakeholders to have a voice in how the exploratory scope can or should 
be refined or expanded. For example, sensitivity tests may show an unreasonable or 
insubstantial response to a changing input, or the model response may inspire an interest to 
investigate another aspect of the outputs more closely. It is common for users to discover that 
their core model behaves in a manner somewhat different from a priori expectations, and to 
want to drop some inputs and add some others after an initial analysis. This is especially 
common when modifying core models to represent changes in technology or new modes, such 
as automated or connected vehicles. Since the nature and magnitude of these changes is so 
deeply uncertain, reviewing a first attempt at modeling these effects can easily inspire new 
ideas from a variety of stakeholders about other possible impacts that might be modeled. 
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Incorporating TMIP-EMAT into model development early in 
the planning process also can be useful, as the core model 
can be designed with intention to enable the kinds of 
manipulations that TMIP-EMAT facilitates. The interface 
used to programmatically connect TMIP-EMAT with a core 
model is fairly flexible, but the development and use of that 
interface can be streamlined if the core model is built 
specifically to accommodate it. One especially convenient 
approach is to consolidate all of the relevant hooks or 
settings that TMIP-EMAT might manipulate into a single consolidated configuration file, or a 
limited number of such files arranged in a well-structured and stable environment, so that each 
policy lever or exogenous uncertainty can be changed easily. One particularly challenging 
situation that should be avoided if possible is having TMIP-EMAT alter a model parameter in a 
file that is regularly overwritten by the core model during its operation, as this may make it 
difficult to ensure the change sticks during the entire core model run. 

TMIP-EMAT tools can effectively present information from the core model and encourages 
analysts to think about the implications of the model assumptions on the results. The results 
from this level of modeling interactivity tend to encourage analysts and other stakeholders to 
think critically about the assumptions embedded in travel demand models—both the 
assumptions explicitly addressed as exogenous uncertainties, and other assumptions that are 
baked into the design and application of the core models. By explicitly expressing a number of 
exogenous uncertainties, stakeholders may be prompted to raise questions about other 
uncertainties and become hesitant to draw real conclusions from the results because of other 
assumptions. The limitations of these assumptions can become more obvious than they would 
have been with a simpler scenario planning approach. This also highlights the need to proceed 
with exploratory analysis iteratively, as once the importance of these particular important 
assumptions becomes clear, it can be helpful to return to the model and incorporate them 
explicitly in the analysis. 

Incorporating TMIP-EMAT into 
model development early in 
the planning process also can 
be useful, as the core model 
can be designed with intention 
to enable the kinds of 
manipulations that 
TMIP-EMAT facilitates. 
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4.0 Case Studies of Travel Model Improvement 
Program-Exploratory Modeling and Analysis Tool 
Scoping and Analysis 

This chapter puts the exploratory analysis steps into greater focus using specific examples from 
the Beta Test Report (Milkovits et al., 2019) to illustrate how to choose specific features of the 
analysis. Additional details regarding these examples can be referenced from the Beta Test 
Report. Here, the focus is on translating the high-level scope of the exploratory analysis to help 
frame the specific policies and uncertainties that are explored, setting up the exploratory 
experiments, aggregating and interpreting results, and applying those results to address policy 
goals. 

4.1 Case Study 1—Oregon Department of Transportation 

Oregon Department of Transportation (ODOT) was motivated to test TMIP-EMAT to support 
analysis of future technologies where little or no observed data exist to estimate and validate 
models, using the Southern Oregon Activity-Based Model. This example was originally 
documented in the Beta Test Report. 

Scoping 

The first step of the scoping process is defining goals and objectives of the analysis. In ODOT’s 
scoping workshop, the group started with the goal of providing equitable and accessible 
transportation system for all income groups. With this overarching goal in mind, the group 
outlined the following policy options for consideration: 

• Transit system enhancements through the investment in fixed-route system and/or a 
collaboration with private TNC services. 

• Incentivizing transit-oriented development (TOD). 

• Pricing mechanisms on roadways (road user charge system, toll/managed lane facilities) on 
TNC/auto-based mobility services, on transit through fare subsidies, or through parking fees. 

• Investment in active transportation modes, possibly through micromobility programs. 

• Mobility as a Service (MaaS). 

• Incentives for electric vehicles. 

In order to evaluate the efficacy of these various policy options, a number of metrics was 
discussed and considered in the ODOT scoping workshop. The metrics were identified on the 
basis of the policies discussed above and how well they relate to the underlying goals behind 
these policies. Metrics that were considered included the following: 

• Accessibility measures, ideally segmented by income, that capture the travel time to 
employment and services with a multimodal lens. 
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• Measures of congestion. 

• Standard metrics of vehicle miles traveled, person miles traveled, and vehicle hours 
traveled. 

• Mode shares by demographic segment. 

• Household expenditures on transportation by income segment. 

• Total time spent traveling. 

• Out of home activities (number and duration). 

• Revenue from user fees/transit. 

• Transit ridership. 

• Safety/reliability/exposure. 

Lastly, a number of exogenous variables was identified that could impact the way in which or 
whether the various policies would be effective. These are the uncertainties that are outside the 
analyst or decisionmaker’s control. Those considered in the ODOT scoping workshop include 
the following: 

• Vehicle technology (autonomous and connected vehicles). 

• Supply side impacts on capacity through more (or less) efficient use of existing roadways. 

• A changing auto ownership model that could support more family sharing and fewer autos 
per household or even a fully fleet shared paradigm. 

• The demand side disutility of in-vehicle time may decrease as autonomous vehicle (AV) 
passengers are able to use their time productively. 

• Cost changes (vehicle operating and parking). 

• User cost and availability of TNCs. 

• Land use and demographic changes, including total growth, shifting income and age 
distributions, spatial distribution, and density/zoning changes. 

• Changes in the larger economy that would impact household spending power, travel costs, 
and work habits (more telecommuting). 

• Management of curb facilities to facilitate local delivery. 

• Freight operational changes for local delivery, as well 
as long/medium haul. 

Once these high-level scoping elements were identified, a 
key piece of the scoping process is fitting these elements 
within the context of what the model is capable of 
analyzing. This requires an understanding of the model 
and the inputs and variables it uses. Table 2 provides the 
specific model elements that were considered with respect to policy levers by the ODOT group. 

Once these high-level scoping 
elements were identified, a key 
piece of the scoping process is 
fitting these elements within 
the context of what the model 
is capable of analyzing. This 
requires an understanding of 
the model and the inputs and 
variables it uses. 
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Table 2. Oregon Department of Transportation model variable identification by lever. 

Lever Potential Model Variables to Represent Lever 
Transit System 
Enhancements 

• Transit lines. 
• Transit headways. 
• Transit travel times. 
• Transit bias coefficients. 
• Transit fares. 
• Increase park-and-ride availability. 
• Restructure walk-connection for mid-range to represent micromobility 

availability. 
• Synthesize transit skim to represent TNC collaboration. 

Pricing • Income-specific auto operating costs. 
• Facility-specific tolls by occupancy, area, and time of day. 
• Transit fare by route, district-district connections, vary by person 

attributes. 
• Parking rates for work and nonwork. 
• New TNC mode alternative. 
• Park-and-ride lot fee. 

Active 
Transportation 

• Increase bike and walk speeds. 
• Change the maximum distance threshold for nonmotorized modes. 
• Enhance active network connectivity. 
• Vary nonmotorized bias constant. 

Mobility as a 
Service 

• Allow zero-auto households to use drive-alone modes. 
• Revise treatment of households with fewer vehicles than workers and/or 

drivers. 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 

For most policy levers, multiple model variables were identified, but for a couple, no model 
variables were identified. These were cases where the model was simply not designed to 
analyze the impacts of a given type of policy, including incentives for TOD and incentives for 
electric vehicles. 

For each of the identified uncertainties, the ODOT group also identified specific model features 
and inputs that could be used to analyze those uncertainties, as shown in table 3. 
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Table 3. Oregon Department of Transportation model variable identification by 
exogenous uncertainty. 

Exogenous Uncertainty Potential Model Variables to Represent Uncertainty 
Vehicle Technology 
Impacts on Operations 

• Capacity by facility type, intersection versus lane capacity. 

Vehicle Technology 
Penetration 

• Simulate as part of synthetic population generation. 
• Incorporate a new model component. 
• Implement average values proportional to penetration rates. 

Zero-Occupancy Vehicles • Post-processing of trip tables. 
• Post-processing of aggregate VMT. 
• Develop new autonomous vehicle routing model. 

Vehicle Technology 
Impacts on Behavior 

• Modify time and cost coefficient. 

Electric Vehicle Impact on 
Fuel Costs 

• Auto operating costs associated with electric vehicles. 

Vehicle Technology Impact 
on Parking costs 

• Factor applied to default parking costs associate with a 
simulation of automated vehicle availability . 

Vehicle Technology 
Impacts on Operations 

• Capacity by facility type, intersection versus lane capacity. 

New Mobility Services and 
Increased Use of TNCs 

• Would require substantial changes to model and was 
dropped. 

Land Use • Zonal employment. 
• Modify synthetic population (control totals by geography). 

Economy • Modify jobs (zonal employment) and workers (synthetic 
population). 

• Vary income distribution in synthetic population. 
• Vary transit level of service. 
• Reduce work tours. 

Curb Management • Terminal times. 
• Parking costs. 
• Availability and alignment of centroid connectors. 

Freight • Direct changes to heavy truck trip table. 
• Replace simulated personal shopping trips with truck trips. 
• Reduce commercial vehicle and personal shopping to 

represent drone delivery. 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 
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After considering the work required to implement each 
lever, uncertainty variable, and metric, the group selected 
the model variables that would be leveraged through 
TMIP-EMAT. In this process, it was important to recognize 
that for independent model input that needs to be modified, 
approximately 10 core model runs are required. The cost of 
adding additional layers of model runs was weighed against 
the importance of each additional varying input. 

Table 4 summarizes the selected levers and exogenous uncertainties. Originally, nine levers 
and uncertainties were scoped. Through the development and testing process, two uncertainties 
were dropped. 

Table 4. Oregon Department of Transportation selected levers and uncertainty variables. 

Policy-Lever/
Uncertainty 
Variable Minimum Default Maximum 

Distribution 
(Applies to 
Exogenous 

Uncertainties 
Only) 

Unit/Correlations/
Other Notes 

Lever: Transit 
Everywhere 
(Synthesize transit 
skim to represent 
TNC collaboration) 

NA Current 
transit 
system 

Transit all over 
replaces fixed-
route system 

NA Originally envisioned as 
a single lever, later 
segmented into two 
levers with the Transit 
level of service (LOS) 
continuous variable 
lever changing Transit 
Alternative-Specific 
Constant (ASC), and 
this Boolean lever 
changing the availability 
of transit. 

Lever: Transit LOS 
(In-vehicle travel 
time (IVTT) 
equivalent change 
in transit utility) 

-10.0 0 10.0 NA Applies to both base 
fixed-route transit, as 
well as transit 
everywhere. 

Lever: Parking rate 
factor on existing 
parking 

0.5 1.0 20 NA Existing parking rates 
are factored up by the 
factor provided. 

Lever: Active 
transport 
improvements—
factor applied to 
walk/bike speeds 

1 1 2 NA Changes only to speed, 
maximum distance is 
maintained; proxy for 
micromobility 
penetration. 

Ex. Uncertainty: 
Interstate (access 
controlled) 
Capacity—vehicles 
per hour per lane 

1,500 1,900 3,000 Uniform A proxy for AV 
penetration and impact 
on access controlled 
facility (Interstate) 
capacity. 

For independent model input 
that needs to be modified, 
approximately 10 core model 
runs are required. The cost of 
adding additional layers of 
model runs was weighed 
against the importance of 
each additional varying input. 
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Table 4. Oregon Department of Transportation selected levers and uncertainty variables 
(continuation). 

Policy-Lever/
Uncertainty 
Variable Minimum Default Maximum 

Distribution 
(Applies to 
Exogenous 

Uncertainties 
Only) 

Unit/Correlations/
Other Notes 

Ex. Uncertainty: 
Auto operating 
cost—cents per 
mile 

1.0 12.4 25.0 Uniform Low represent electric 
vehicle efficiency, high 
represents fleet AVs 
and higher pricing 
(tax) structures. 

Ex. Uncertainty: 
Household 
income multiplier 

0.5 1.0 1.5 Uniform Was used as a simple 
method to represent 
changing jobs, job 
type, household 
worker mix, etc. 

Ex. Uncertainty: 
Value of time 
(change in 
sensitivity to 
IVTT) 

0.5x 1x 1.2x Would make 
higher 

sensitivity less 
likely 

Uncertainty variable 
was dropped when 
found to be perfectly 
correlated with auto 
operating costs. 

Ex. Uncertainty: 
Household (HH) 
densification 
(% shift distance 
to the center) 

0.5x from 
the core 

1x from 
the core 

1.5x from the 
core 

Uniform Prototype 
implementation 
defined rings, chose 
number of houses to 
shift by ring, and did a 
ring jump. Testing 
following full Latin 
HyperCube Sampling 
(LHS) runs showed 
unreasonable 
responses and 
variable was removed 
from scope. 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 

Table 5 provides the scoped metrics for ODOT’s exploratory analysis during the scoping step. 
Again, these metrics were selected to measure the effectiveness of the set of policies on the 
goals of the analysis, which were to provide an equitable and accessible transportation system 
to all users. 
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Table 5. Oregon Department of Transportation scoped performance metrics. 

Metric 
Percentage of population with access to 50k jobs by car within 20 minutes in performance 
metrics (PM) 

Bike and walk mode share 

Transit with park-and-ride and kiss and ride mode share 

Millions of person miles traveled 

Millions of vehicle miles traveled in PM 

Millions of auto miles traveled 

Millions of truck miles traveled 

Millions of vehicle miles traveled 

Thousands of vehicle hours traveled in PM 

Thousands of auto hours traveled 

Thousands of truck hours traveled 

Thousands of vehicle hours traveled 

Percent of Interstate miles over 90% volume-to-capacity (V/C) ratio during the PM peak 

Percent of principal arterial miles over 90% V/C ratio during the PM peak 

Percent of minor arterial miles over 90% V/C ratio during the PM peak 

Number of autos owned per household 

Percent of nonmandatory tours 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 

Interfacing between Travel Model Improvement Program-Exploratory 
Modeling and Analysis Tool and the Core Model 

ODOT staff built the API implementation in such a way that interfaced with both R and Python. 
The structured API that organizes the interaction points between TMIP-EMAT and the core 
model were built as part of this process. ODOT also leveraged their model development 
consultant to assist with development of model-side API functionality to enable a programmatic 
control of model inputs. 

Univariate sensitivity tests were conducted using TMIP-EMAT’s univariate experimental design 
process to test that the model was appropriately sensitive to each uncertainty variable and 
policy lever. ODOT produced a set of R summaries that input the experiment dataframe to 
comprehensively compare all metrics of each experiment against the baseline metrics, and to 
compare each metric variation by lever and uncertainty variable. Figure 32 provides an example 
of these tests, where a capacity increase in freeways was evaluated against the key 
performance metrics. 
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Figure 32. Chart. Comparison of single experiment across all metrics. 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 

Ultimately, the univariate sensitivity tests were useful as an 
initial confirmation of the correct operation of the model, 
and to gauge the degree of variation for each metric. It is 
after the univariate sensitivity tests are complete that we 
begin to see if the metric selection is appropriate. 

Experimental Design 

The TMIP-EMAT software includes an experimental design feature that automatically generates 
a Latin Hypercube design of experiments, which includes the input values for each policy lever 
and uncertainty variable across the set of model runs to be performed. This method ensures 
that the range of inputs to the experiments adequately covers the input domain and does not 
leave large information gaps for certain combinations of inputs. As a result, the analyst can be 
more confident in the performance metric results and relationships that are output from the core 
model runs. ODOT’s experiments were run across multiple computers with the scope and 
results saved in a common SQLite database on a single machine. 

There was a total of eight policy levers and uncertainty variables in ODOT’s scope. For ideal 
meta-model development, 10 experiments should be run for each policy lever and uncertainty 
variable. Thus, the experimental design set input values for 80 core model runs. As noted 

The univariate sensitivity tests 
were useful as an initial 
confirmation of the correct 
operation of the model and to 
gauge the degree of variation 
for each metric. 
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above, the specific input values for the 80 model runs were determined by the TMIP-EMAT 
software. 

It is worth noting that there is an opportunity for errors to be introduced when moving from 
individual sensitivity test runs to the full set of experiments. ODOT ended up running the full set 
of experiments three times due to several run and setup issues that occurred: 

• In the first run of the full set of experiments, ODOT conducted a review after 20 runs were 
completed and discovered issues in how the model inputs were set. 

• In the second run of experiments, all 80 runs were completed, but the review revealed an 
issue with the land use density variable, which ultimately led to the removal of this variable 
from the exploratory analysis. After removing that variable, 10 fewer runs were needed and 
the experimental design was updated to include only 70 runs, which were completed and 
used for the analysis workshop. 

• The availability of network licenses was an issue at times while running the core model runs. 
ODOT also needed access to licenses for other ongoing studies, which required 
management of the license utilization throughout execution of core model runs. 

• ODOT also experienced random crashes of the model during the core model execution due 
to configuration issues with the VISUM model software. The software vendor, PTV, was able 
to address these issues, which allowed the complete set of experiments to run in the final 
iteration of the experimental design execution. 

As noted above, the land use variable was ultimately 
removed from the analysis. In this particular example, the 
land use variable included the development of a 
mechanism to move development from the downtown 
areas to the suburban ring areas. While this mechanism 
passed the initial sensitivity tests that ran at the extreme 
values, when the model was run with the full set of experiments, the household density 
produced a nonmonotonic and unreasonable response in several performance measures; most 
notably the nonmotorized mode share (see results from the display experiments tool in 
figure 33). After several rounds of troubleshooting that, it was ultimately determined that the 
best path forward was to remove the variable. Issues like this can point to problems with 
sensitivities in the underlying model that could be addressed at a later point or as part of the 
TMIP-EMAT work. 

There is an opportunity for 
errors to be introduced when 
moving from individual 
sensitivity test runs to the full 
set of experiments. 
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Figure 33. Graph. Oregon Department of Transportation bike and walk share sensitivity 

to household density. 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 

As described above, any number of issues can emerge when executing the core model runs 
using an automated API. While several challenges emerged in ODOT’s implementation of the 
experimental design runs, the use of multiple systems gave ODOT a lot of flexibility and 
responsiveness to complete the model runs in a timely manner even with these setbacks. 
Moreover, having overcome those challenges, future implementations of EMAT with the ODOT 
model will likely proceed much more smoothly. 

Exploring Results 

Once the experimental design runs of the core model were completed, the results were 
aggregated and interpreted using some of the TMIP-EMAT tools discussed in section 3.4. 

ODOT used the interactive visualizations and feature scoring to determine whether policy levers 
used in the analysis were important factors for key metrics. In the visualization exploration, 
ODOT went back to the original goal (providing accessibility to all groups) and investigated 
metrics that supported the ultimate goal. For example, reducing congestion is an intermediate 
goal, but improved accessibility may mean more overall auto travel. 

ODOT also used the multi-objective optimization and robust optimization utilities of EMAT to 
reveal tradeoffs between nonmotorized and transit mode shares. ODOT noted that the 
optimization utilities required that solutions optimize at least one performance metric, while 
ODOT preferred to find robust solutions that performed well across a collection of performance 
metrics. This led ODOT to consider composite performance metrics that measure the relative 
performance of the other performance metrics in a single metric. By doing so, the directed 
search can be transformed into a solution-finding utility that optimizes the system performance 
in a more ideal way across the set of primary performance metrics that ODOT was actually 
interested in. 
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4.2 Case Study 2—Greater Buffalo Niagara Regional Transportation 
Council 

The Greater Buffalo Niagara Regional Transportation Council (GBNRTC) was motivated to use 
TMIP-EMAT to evaluate investments along a specific corridor in the region using their four-step 
travel model. This example was originally documented in the Beta Test Report. 

Scoping 

GBNRTC defined their goals for their TMIP-EMAT analysis on the basis of focus areas in their 
Regional Transportation Plan (RTP). The goals they defined included the following (the bullet 
heading denotes one of the focus areas of the RTP, and the subbullets denote specific goals 
around that focus area): 

• Using transportation investments to strengthen communities using existing infrastructure: 

− Increase accessibility to influence land use. 

− Increase access to services for general population and communities of concern (high-
poverty zip codes). 

− Increase multimodal access to neighborhood services. 

− Increase active transportation options. 

− System safety for all modes. 

− Improve access to parks, greenways, and waterfronts. 

• Creating opportunities for economic development and supporting access for the workforce in 
the region: 

− Reduce freight delays. 

• Improving mobility using technology: 

− Decrease lane-miles with underutilized capacity. 

− Decrease impervious surfaces. 

− Decrease VMT. 

• Protecting the natural environment: 

− Increase lane miles of connected corridors. 

− Improve reliability. 

During the scoping workshop with GBNRTC, these goals were used as the foundation for 
developing specific transportation policies. The policies that were considered are shown in 
table 6. 
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Table 6. Policy ideas from the Greater Buffalo Niagara Regional Transportation Council 
scoping workshop. 

Scope Focus Area Policy 
Corridor level Transit and 

nonmotorized 
improvements 

• Complete streets with potential higher-transit service. 
• Mobility hubs. 
• Transit signal priority (TSP) and bus priority. 
• Cycle track. 

Corridor level Land use • Encourage redevelopment. 
• Densification of land use. 

Corridor level Freight • Binational, green, autonomous, freight corridor. 
• Distribution centers. 

Corridor level Roadway 
improvements 

• Adaptive signal control in coordination with highways. 
• Support for new vehicle technology (e.g., 

autonomous, mixed, connected vehicles). 

Regionwide All • Increase pretrip information. 
• Shared-use mobility services. 
• Regional cycle network. 
• MaaS 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 

As noted earlier, GBNRTC decided to focus this work on specific corridors. While three corridors 
were considered, the Bailey Avenue corridor was selected for the exploratory analysis. Within 
this corridor, the following policy levers were determine to be relevant for the analysis: 

• Bus Rapid Transit (BRT) with dedicated lane. 

• BRT without dedicated lane. 

• Transit mobility hubs scenarios. 

• Parking changes (restricted on-street and system controlled). 

In order to evaluate these types of policies, a number of metrics was identified in the scoping 
workshop as well. Given the focus on the Bailey Avenue corridor, corridor-level metrics were 
considered more appropriate in many cases than regional metrics. The key metrics that were 
identified for the study include the following: 

• Daily VMT, VHT, and delay by time of day. 

• Regional trips to/from the Bailey Corridor. 

• Daily corridor route ridership and transit mode share. 

• Daily nonmotorized mode share. 

• Employment within 20 minutes of the Bailey corridor. 
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• Regional VMT. 

• Total transit boardings. 

• Regional transit and nonmotorized mode shares by time of day. 

Having narrowed the scope of the exercise considerably, the next step in the scoping workshop 
was to identify uncertainties that may impact the effectiveness of the strategies. The following 
set of uncertainties were identified: 

• Land use: Shift in employment locations and density of new development. 

• Demographics: Aging population and income distributions. 

• Vehicle technology: Mix of connected, automated technology available and capabilities. 

• Mobility services, including TNCs and micromobility. 

• Climate and weather impact on nonmotorized modes. 

• International travel demand in response to change in the currency exchange and how the 
border crossings will operate. 

The next step in the workshop was to identify the existing or needed model functionality to 
represent each lever and uncertainty variable in the model. Table 7 and table 8 identify all 
potential model variables for each lever and uncertainty. As part of the discussion, the group 
discussed the level of effort involved in developing new model functionality. 

Table 7. Greater Buffalo Niagara Regional Transportation Council model variable 
identification by lever. 

Lever Potential Model Variables to Represent Lever 
Roadway reconfiguration • Highway network geometry. 

• Lane configuration. 
• Functional class and capacity attributes. 
• Speed. 
• Intersection delay. 

Promote nonmotorized modes • Make links available for walk and bike modes. 
• Centroid connector number and location. 
• Nonmotorized speeds (micromobility). 

Mobility hubs • Add park-and-ride availability at key stops. 

Transit enhancements • Travel time improvements (TSP and BRT). 
• Headway improvements. 
• Stop frequency. 
• Access/egress improvements. 
• Add new transit route. 

Parking policies • Terminal times (represent less on-street parking). 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 
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Table 8. Greater Buffalo Niagara Regional Transportation Council model variable 
identification by exogenous uncertainty. 

Exogenous 
Uncertainty Potential Model Variables to Represent Uncertainty 
Land use/
demographics 

• Employment level by segment (retail, wholesale, manufacturing, 
Government, service, office). 

• Household size and income segmentation. 
• Number of households by location along corridor. 
• School/university enrollment. 
• Development at key areas (e.g., Genesee node on Bailey). 

Vehicle technology • Supply side changes. 
• Roadway capacity. 
• Intersection delay. 
• Parking costs and terminal times to represent self-parking. 
• Electric vehicle reductions in operating costs. 
• Demand side changes. 
• In-vehicle travel time sensitivity. 
• Zero-occupancy vehicle travel generated as separate trip table. 
• New mobility services represented through vehicle availability levels. 

Climate/weather • Decrease walk speed. 
• Nonmotorized distance threshold. 
• Increase transit in-vehicle time. 
• Decrease roadway speeds/capacities. 
• Reduce parking capacity. 

International • Increased shopping trips across border. 
• Change enplanements at Buffalo Niagara International Airport. 
• Border crossing availability/capacity/delay. 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 

After considering the work required to implement each lever, uncertainty variable, and metric, 
the group selected the model variables that would be used for TMIP-EMAT, keeping in mind 
that the total number of policy levers and independent uncertainty variables has a linear 
relationship with the required number of core model runs; for example, 10 policy levers/
uncertainty variables require 100 core model runs, while the number of metrics has no impact 
on the number of core model runs required. 

The scope was revised through the subsequent steps. GBNRTC identified four levers 
associated with the corridor: 1) improved transit headway, 2) micromobility options, 3) mobility 
hubs, and 4) reduced parking. They also identified four uncertainties: 1) land-use, 2) self-
parking vehicles, 3) shared mobility, and 4) Inclement weather. Through the development and 
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testing process, two levers were dropped because of unreasonable or insubstantial responses 
in the model. Table 9 summarizes the final selected levers and exogenous uncertainties. 

Table 9. Greater Buffalo Niagara Regional Transportation Council selected levers and 
uncertainty variables. 

Policy-Lever/
Uncertainty 
Variable Minimum Default Maximum 

Distribution 
(Applies to 
Exogenous 

Uncertainties 
Only) 

Unit/Correlations/
Other Notes 

Lever: Transit 
headway 

True False  NA Half the headway on 
Bailey Avenue routes 

Lever: 
Micromobility 

 False True NA Improved access to 
transit stops; higher 
density of transit stops 
along Bailey corridor. 

Lever: Mobility 
hubs 

 False True NA Every other stop on 
Bailey Avenue is a PNR 
lot. 

Lever: Reduced 
parking 

 False True NA Parking on Bailey is 
moved to side streets by 
increasing terminal time 
for auto. 

Ex. Uncertainty: 
Bailey land use 

0 0 1 Uniform 0 = base 2025 forecast; 
and 1 = full build out of 
vacant lots along 
corridor. 

Ex. Uncertainty: 
Self-parking 

False False True Binary True = all terminal times 
are set to zero; and 
false = base model 
terminal times related to 
land-use density. 

Ex. Uncertainty: 
Shared mobility 

0 0 1 Uniform 0 = calibrated 
distribution of zero and 
insufficient vehicle 
households; and 1 = all 
households are treated 
as having sufficient 
vehicles. 

Ex. Uncertainty: 
Weather impacts 

0 0 1 Binary w/ 
90% = 0; 
10% = 1 

0 = base capacity and 
walk speed; and 1 = 
75% decrease in 
highway capacity, walk 
speed. 

(Source: TMIP-EMAT Beta Test by Oregon DOT.) 
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Interfacing between Travel Model Improvement Program-Exploratory 
Modeling and Analysis Tool and the Core Model 

Because the GBNRTC model was utilized in the initial TMIP-
EMAT proof-of-concept work, an API had already been 
developed to interface with the model, so no additional work 
was needed there. However, additional model functionality 
was required in order to efficiently update the specific model 
inputs that would be changed in the set of core model runs 
that were to be performed. Of particular note, the GBNRTC micromobility, transit TSP, and BRT 
levers were represented through changes in the transit and highway networks (Note that the 
transit TSP and BRT levers were removed from the final analysis due to issues with the transit 
representation.). Coordinating changes across all the networks and managing the files was an 
opportunity for error and required careful testing. 

Univariate Sensitivity tests were conducted to verify that input variables had appropriate effects 
on performance metrics. The univariate sensitivity tests were useful as a first test in assessing 
the reasonableness of the levers, uncertainties, and metrics; and in a couple of cases, the 
univariate tests alerted GBNRTC of elements of the analysis that were not working properly, 
and they were fixed prior to running the full set of experiments in the next step. 

Experimental Design 

The TMIP-EMAT software creates the experimental design to determine the set of input variable 
levels for each core model run. The GBNRTC API was able to automatically run the set of core 
model runs on a single computer. 

In preparing the model results, it was concluded that the performance of the transit TSP and BRT 
strategies was skewing some of the analysis results, specifically for scenario discovery and 
multi-objective optimization analyses. As a result, these strategies were removed from the analysis, 
and the set of experiments was rerun using the set of strategies outlined in the previous section. 

Exploring Results 

Overall, GBNRTC found feature scoring to be a useful tool for analysis. The visualizations of the 
feature scores were useful for showing the broader view of how the levers and uncertainties 
affected the performance metrics and helped explain what lever/uncertainty dominated the 
results. Rather than use the feature scoring results directly, GBNRTC used the feature scoring 
results to inform a larger story that would be told to decisionmakers. Similarly, GBNRTC used 
the scatterplots and histograms from the interactive vislualizer to illustrate the results visually to 
policymakers and the public. 

The “Lasso” feature in the scatter plot of the interactive visualizer was used by GBNRTC to 
select a set of scenarios and scroll through different plots to see where they lie within the range 
of other metrics, uncertainties, and levers. This feature allowed for assessing best/worst case 
outcomes and outliers, understand what other uncertainties or levers have the biggest impact 
on metrics, and assess which levers/uncertainties are driving the interaction with other levers/
uncertainties (i.e., driving outliers). 

Coordinating changes 
across all the networks and 
managing the files was an 
opportunity for error and 
required careful testing. 
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5.0 Conclusion 
TMIP-EMAT tools can effectively present information from the core model and encourages 
analysts to think about the implications of the model assumptions on the results. The results 
from this level of modeling interactivity tend to encourage analysts and other stakeholders to 
think critically about the assumptions embedded in travel demand models—both the 
assumptions explicitly addressed as exogenous uncertainties and other assumptions that are 
baked into the design and application of the core models. By explicitly expressing a number of 
exogenous uncertainties, stakeholders may be prompted to raise questions about other 
uncertainties and become hesitant to draw real conclusions from the results because of other 
assumptions. The limitations of these assumptions can become more obvious than they would 
have been with a simpler scenario planning approach. 

Ultimately, TMIP-EMAT was developed to support robust decisionmaking for transportation. The 
multi-dimensional and multi-objective nature of the tools pairs well with the nuanced and multi-
faceted nature of the transportation system. The tools provided by TMIP-EMAT, and by 
exploratory modeling more generally, are meant to be descriptive, and not prescriptive. Each 
tool is built to provide insight into the relationships between policy levers, uncertainties, and 
performance measures. The end goal of the analysis is not to provide explicit guidance about 
what decisions are “best” but to allow decisionmakers and other stakeholders to better grasp the 
tradeoffs between different courses of action, and help to facilitate and focus discussion about 
policy actions. 

TMIP-EMAT can be a valuable tool for proactive, iterative, continuous, and comprehensive 
transportation planning, especially under the conditions of deep uncertainty. It is a tool that 
planning agencies can use to facilitate community engagement and visioning process, and 
enable effective communication among technical analysts, planners, various stakeholders and 
decisionmakers. With appropriate robust core models, TMIP-EMAT empowers communities to 
conduct a much broader question-driven exploration, leading to decisions that are robust in a 
wide range of futures at a time when planners must deal with deep uncertainty. With the gained 
insights of potential, possible, plausible, probable, or preferred futures, policy-makers and 
stakeholders can effectively plan, prepare, mitigate, adapt and shape their strategies based on 
the community value and vision. 
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Appendix 1. Alphabetical List of TMIP-EMAT 
Methodological Tools 
• CART

Classification and Regression Trees, or CART, is a simple machine learning technique for
predicting a target variable. Within TMIP-EMAT, the CART algorithm is implemented as a
scenario discovery method, which can be used to develop interesting boxes for model
exploration.

• Contrast Experiments
The contrast experiments method renders two different set of experiments on a common
scatter plot matrix. This visualization approach makes it easy to see if the overall shape of
the distribution of experiment inputs and outputs is similar or different. It is particularly useful
in validating that TMIP-EMAT’s automatically generated meta-models are performing
correctly.

• Display Experiments
The display experiments method generates a scatter plot matrix that displays model inputs
(uncertainties and policy levers) in one dimension and model outputs (performance
measures) in the other.

• Feature Scoring
This is a scenario discovery method for identifying what model inputs have the greatest
relationship to the outputs by computing a numerical value that summarizes the relative
importance of each input in determining the level of the output.

• Exploratory Scoping
While not a methodological approach per se, TMIP-EMAT provides a notational structure to
concretely define the manner in which the XLRM framework is to be operationalized for a
given travel model (R) and its uncertainties (X), policy levers (L), and performance measures
(M).

• Interactive Visualizer
The Interactive Visualizer in TMIP-EMAT provides a set of tools that can display a
dynamically generated selection of experiments in a number of visualizations, including
histograms, scatter plots, and SPLOMs. The dimensional bounds of the select (the "box")
can be manipulated by a user programmatically or by clicking and dragging directly on the
figures.

• Latin Hypercube Design of Experiments
A Latin Hypercube is a space-filling mathematical process for making pseudo-random draws
from a multi-dimensional space. This kind of design is not formally "random," but
approximates a random distribution while ensuing a reasonable coverage across the
spectrum of possible values in each dimension. Meta-models for deterministic simulation
experiments, such as most transportation models, are best supported by a “space filling”
design of experiments such as this.
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• Meta-model Creation 
A main feature of TMIP-EMAT is the ability to automatically generate meta-models that 
provide a good approximation of the underlying core model in most situations. By default, 
metamodels derived through TMIP-EMAT include two stages, a linear regression model to 
capture overall trends and a gaussian process regression (GPR) model that can capture a 
wide variety of non-linear effects. 

• Monte Carlo Simulation 
A Monte Carlo simulation is a simple random (or in more precise computer science 
terminology, pseudo-random) process for generating a design of experiments. It is not 
generally an efficient design, but with a large enough sample size efficiency is less relevant 
and simplicity can be valuable. 

• Multi-objective Optimization 
With exploratory modeling, optimization is also often undertaken as a multi-objective 
optimization exercise, where multiple and possibly conflicting performance measures need 
to be addressed simultaneously. Instead of generating one unique "optimal" solution, this 
TMIP-EMAT method can be used to find a spectrum of different solutions. Each of them 
solves the problem at a different weighting of the various objectives. Decisionmakers can 
then review the various different solutions, and make judgements about the various 
tradeoffs implicit in choosing one over another. 

• Policy Contrast 
The Policy Contrast method in TMIP-EMAT allows an analyst to compare the outcomes of 
two different sets of policies. The tool runs the model across a distribution of inputs, and 
displays the resulting distribution of performance measure outputs. Two sets of model runs 
are generated with the same design of experiments for all the noncontrasted distributions, 
and so any variation in the performance measures can be unambiguously linked to the 
changes in the specific-value inputs, instead of being a result of input stochasticity. 

• PRIM 
The Patient Rule Induction Method, or PRIM, is a scenario discovery method. This method 
is a "bump hunting" technique introduced by Friedman and Fisher (1999), which often 
provides insightful results for complex models. 

• Reference Experiment 
A "design of experiments," which contains only a single experiment with all input values set 
to their default parameters. 

• Robust Optimization 
Robust optimization is a variant of more traditional optimization problems. Rather than 
seeking a solution that provides the best outcome, a robust optimization problem is one 
where we try to find policies that yield good outcomes across a broad range of possible 
futures. It is common to employ various different criteria for what constitutes "good" or 
"broad" by also borrowing methods from the Multi-objective Optimization tools. 

• Search over Levers 
A Search over Levers is a particular style of multi-objective optimization for exploratory 
modeling in the XLRM framework, where the uncertainties are held constant at some 
particular value, and only the policy levers are manipulated by the search algorithm. 
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• Scatter Plot Matrix
The Scatter Plot Matrix, or SPLOM, is a visualization method. It is a collection of two-
dimensional scatter plots arranged in a matrix, where each column of plots shares a
common x-axis definition, and each row shares a common y-axis definition. The Display
Experiments and Contrast Experiments tools in TMIP-EMAT create SPLOMs for one or two
sets of experimental data, respectively.

• Threshold Scoring
A variant of feature scoring, where inputs are scored not with just a single numerical value,
but with a range of values representing the relative importance of inputs for getting the
output to be above or below various possible threshold values.

• Univariate Sensitivity Testing
One of the simplest experimental designs is a set of univariate sensitivity tests. In this
design, a set of baseline model inputs is used as a starting point, and then input parameters
are changed one at a time to non-default values. Univariate sensitivity tests are excellent
tools for debugging and quality checking the model code, as they allow modelers to confirm
that each modeled input is (or is intentionally not) triggering some change in the model
outputs.

• Worst Case Discovery
Worst Case Discovery is a particular style of multi-objective optimization for exploratory
modeling in the XLRM framework. In this analysis, the policy levers are held constant at
some particular value, and only the exogenous uncertainties are manipulated by the search
algorithm. In addition, the directionality of all objective dimensions is inverted, so that the
search algorithm seeks to find values for the input that lead to worse outcomes instead of
better ones.
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